Skip to main content
Log in

Monitoring automotive oil degradation: analytical tools and onboard sensing technologies

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Engine oil experiences a number of thermal and oxidative phases that yield acidic products in the matrix consequently leading to degradation of the base oil. Generally, oil oxidation is a complex process and difficult to elucidate; however, the degradation pathways can be defined for almost every type of oil because they mainly depend on the mechanical status and operating conditions. The exact time of oil change is nonetheless difficult to predict, but it is of great interest from an economic and ecological point of view. In order to make a quick and accurate decision about oil changes, onboard assessment of oil quality is highly desirable. For this purpose, a variety of physical and chemical sensors have been proposed along with spectroscopic strategies. We present a critical review of all these approaches and of recent developments to analyze the exact lifetime of automotive engine oil. Apart from their potential for degradation monitoring, their limitations and future perspectives have also been investigated.

Onboard assessment of oil quality: the sensors and spectroscopic strategies proposed for this are reviewed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Svend H (1998) Air pollution from large two-stroke diesel engines and technologies to control it. In: Eran S (ed) Handbook of air pollution from internal combustion engines. Academic, San Diego, pp 477–534

    Google Scholar 

  2. Zerbe C (1969) Mineralöle, Band II, 2nd edn. Springer, Berlin

    Google Scholar 

  3. Rudnick LR (2006) Synthetics, mineral oils, and bio-based lubricants, chemistry and technology. CRC, Boca Raton

  4. Totten GE, Westbrook SR, Shah RJ (eds) (2003) Fuels and lubricants handbook technology, properties, performance, and testing. ASTM, West Conshohocken

  5. Rudnick LR (2003) Lubricant additives: chemistry and applications. Marcel Dekker, New York

  6. Rudnick LR (2009) Lubricant additives: chemistry and applications. CRC, Boca Raton

  7. Fox MF, Mortier RM, Orszulik ST (2008) Chemistry and technology of lubricants. Springer, Berlin

  8. Hamblin PC, Kristen U, Chasan D (1990) Ashless antioxidants, copper deactivators and corrosion inhibitors: their use in lubricating oils. Lubr Sci 2(4):287–318

    Article  CAS  Google Scholar 

  9. Singh H, Swaroop S (1997) Oxidation behavior of base oils and their constituting hydrocarbon types. Prep ACS Div Petrol Chem 42:218

    CAS  Google Scholar 

  10. Guan L, Feng XL, Xiong G, Xie JA (2011) Application of dielectric spectroscopy for engine lubricating oil degradation monitoring. Sens Actuators A Phys 168(1):22–29

    Article  Google Scholar 

  11. Sergeyeva TA, Piletsky SA, Brovko AA, Slinchenko EA, Sergeeva LM, El'skaya AV (1999) Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection. Anal Chim Acta 392(2–3):105–111

    Article  CAS  Google Scholar 

  12. Korotcenkov G, Cho BK (2011) Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement. Sens Actuators B Chem 156(2):527–538

    Article  Google Scholar 

  13. Wagner T, Rao C, Kloock JP, Yoshinobu T, Otto R, Keusgen M, Schöning MJ (2006) “LAPS Card”—a novel chip card-based light-addressable potentiometric sensor (LAPS). Sens Actuators B Chem 118(1–2):33–40

    Article  Google Scholar 

  14. Bratov A, Abramova N, Ipatov A (2010) Recent trends in potentiometric sensor arrays—a review. Anal Chim Acta 678(2):149–159

    Article  CAS  Google Scholar 

  15. Hartmann J, Auge J, Lucklum R, Rösler S, Hauptmann P, Adler B, Dalcanale E (1996) Supramolecular interactions on mass sensitive sensors in gas phases and liquids. Sens Actuators B Chem 34(1–3):305–311

    Article  Google Scholar 

  16. Mujahid A, Dickert FL (2010) Surface nano-patterning of polymers for mass-sensitive biodetection. In: Carrara S (ed) Nano-bio-sensing. Springer, Berlin, pp 45–82

  17. Dickert FL, Tortschanoff M, Bulst WE, Fischerauer G (1999) Molecularly imprinted sensor layers for the detection of polycyclic aromatic hydrocarbons in water. Anal Chem 71(20):4559–4563

    Article  CAS  Google Scholar 

  18. Dickert FL, Lieberzeit P, Miarecka SG, Mann KJ, Hayden O, Palfinger C (2004) Synthetic receptors for chemical sensors—subnano- and micrometre patterning by imprinting techniques. Biosens Bioelectron 20(6):1040–1044

    Article  CAS  Google Scholar 

  19. Fleming WJ (2008) New automotive sensors-a review. Sensors J IEEE 8(11):1900–1921

    Article  Google Scholar 

  20. Snook WA (1968) Used engine oil analysis. Lubrication 54(9):97–116

    Google Scholar 

  21. Smolenski DJ, Schwartz SE (1994) Automotive engine-oil condition monitoring. Lubr Eng 50(9):716–722

    Google Scholar 

  22. Jagannathan S, Raju GVS (2000) Remaining useful life prediction of automotive engine oils using MEMS technologies. In: Proceedings of the 2000 American control conference, vol 3515, pp 3511–3512

  23. Burg P, Selves J-L, Colin J-P (1997) Prediction of kinematic viscosity of crude oil from chromatographic data. Fuel 76(11):1005–1011

    Article  CAS  Google Scholar 

  24. Knothe G, Steidley KR (2007) Kinematic viscosity of biodiesel components (fatty acid alkyl esters) and related compounds at low temperatures. Fuel 86(16):2560–2567

    Article  CAS  Google Scholar 

  25. Hammond JM, Lec RM, Libby DG, Zhang XJ, Prager LA An acoustic automotive engine oil quality sensor. In: Proceedings of the international conference on solid state sensors and actuators: TRANSDUCERS ′97, Chicago, 16–19 Jun 1997, vol 1342, pp 1343–1346

  26. Hammond JM, Lec RM, Zhang XJ, Libby DG, Prager LA (1997) An acoustic automotive engine oil quality sensor. In: Proceedings of the 1997 IEEE international frequency control symposium, 28–30 May 1997, pp 72–80

  27. Lec RM, Zhang XJ, Hammond JM (1997) A remote acoustic engine oil quality sensor. In: Proceedings of the 1997 IEEE ultrasonics symposium, 5–8 Oct 1997, vol 411, pp 419–422

  28. Jakoby B, Eisenschmid H, Herrmann F (2002) The potential of microacoustic SAW- and BAW-based sensors for automotive applications – a review. Sensors J IEEE 2(5):443–452

    Article  CAS  Google Scholar 

  29. Jakoby B, Scherer M, Buskies M, Eisenschmid H (2003) An automotive engine oil viscosity sensor. Sens J IEEE 3(5):562–568

    Article  CAS  Google Scholar 

  30. Agoston A, Ötsch C, Jakoby B (2005) Viscosity sensors for engine oil condition monitoring—application and interpretation of results. Sens Actuators A Phys 121(2):327–332

    Article  Google Scholar 

  31. Brouwer MD, Gupta LA, Sadeghi F, Peroulis D, Adams D (2012) High temperature dynamic viscosity sensor for engine oil applications. Sens Actuators A Phys 173(1):102–107

    Article  CAS  Google Scholar 

  32. Sang Myung C (2011) Simulation of engine life time related with abnormal oil consumption. Tribol Int 44(4):426–436

    Article  Google Scholar 

  33. Jarvis NL, Wohltjen H, Klusty M (1994) Solid-state microsensors for lubricant condition monitoring. Part I: Fuel dilution meter. Lubr Eng 50(9):689–693; other information: PBD: Sep 1994:Medium: X

    Google Scholar 

  34. Wohltjen H, Jarvis NL, Klusty M, Gorin N, Fleck C, Shay G, Smith A (1994) Solid state microsensors for lubricant condition monitoring: II. Total base number. Lubr Eng 50:861–866

    CAS  Google Scholar 

  35. Länge K, Rapp B, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391(5):1509–1519

    Article  Google Scholar 

  36. Lieberzeit P, Palfinger C, Dickert F, Fischerauer G (2009) SAW RFID-tags for mass-sensitive detection of humidity and vapors. Sensors 9(12):9805–9815

    Article  CAS  Google Scholar 

  37. Gager DJ (1986) On-board electronic oil contamination detector for vehicle engines. US Patent 4,570,069

  38. Freese CE, Rostoskey MJ, Garvey RE (1997) In-situ oil analyzer and methods of using same, particularly for continuous on-board analysis of diesel engine lubrication systems. US Patent 5,604,441

  39. Chao Z (2003) A micro-acoustic wave sensor for engine oil quality monitoring. In: Proceedings of the 2003 IEEE international frequency control symposium and PDA exhibition jointly with the 17th European frequency and time forum, 4–8 May 2003, pp 971–977

  40. Piletsky SA, Turner APF (2002) Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 14(5):317–323

    Article  CAS  Google Scholar 

  41. Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14(23):1609–1613

    Article  CAS  Google Scholar 

  42. Wang SS, Tung SC (1985) Electrochemical phenomena in lubricants I. Potential measurements and the analysis of metal/additive interactions. Extended abstract no. 431, fall meeting of the Electrochemical Society, Las Vegas

  43. Wang SS, Lee A, Mamrick MS (1987) An electrochemical technique for evaluating electrical contact lubricants. In: Proceedings of the 33rd IEEE Holm conference on electrical contacts, Chicago, IL, p 9

  44. Lee H-S, Wang SS, Smolenski DJ, Viola MB, Klusendorf EE (1994) In situ monitoring of high-temperature degraded engine oil condition with microsensors. Sens Actuators B Chem 20(1):49–54

    Article  CAS  Google Scholar 

  45. Cerny J, Strnad Z, Sebor G (2001) Composition and oxidation stability of SAE 15W-40 engine oils. Tribol Int 34(2):127–134

    Article  CAS  Google Scholar 

  46. Wang SS, Lee HS (1992) A sensor for glycol contamination in oil. Extended abstract no. 692, fall meeting of the Electrochemical Society, Toronto

  47. Wang SS, Lee H-S (1997) An electrochemical sensor for distinguishing two-stroke-engine oils. Sens Actuators B Chem 40(2–3):199–203

    Google Scholar 

  48. Wang SS, Lee H-S (1997) The application of a.c. impedance technique for detecting glycol contamination in engine oil. Sens Actuators B Chem 40(2–3):193–197

    Article  Google Scholar 

  49. Wang SS, Maheswari SP, Tung SC (1989) The nature of electrochemical reactions between several zinc organodithiophosphate antiwear additives and cast iron surfaces. Tribol Trans 32(1):91–99

    Article  CAS  Google Scholar 

  50. Simon SW (2001) Road tests of oil condition sensor and sensing technique. Sens Actuators B Chem 73(2–3):106–111

    Google Scholar 

  51. Simon SW (2002) Engine oil condition sensor: method for establishing correlation with total acid number. Sens Actuators B Chem 86(2–3):122–126

    Google Scholar 

  52. Wang SS, Lin Y (2003) A new technique for detecting antifreeze in engine oil during early stage of leakage. Sens Actuators B Chem 96(1–2):157–164

    Article  Google Scholar 

  53. Farrington AM, Slater JM (1997) Monitoring of engine oil degradation by voltammetric methods utilizing disposable solid wire microelectrodes. Analyst 122(6):593–596

    Article  CAS  Google Scholar 

  54. Smiechowski MF, Lvovich VF (2003) Iridium oxide sensors for acidity and basicity detection in industrial lubricants. Sens Actuators B Chem 96(1–2):261–267

    Article  Google Scholar 

  55. Dewey A, Srinivasan V, Icoz E (2001) Visual modeling and design of microelectromechanical system transducers. Microelectron J 32(4):373–381

    Article  Google Scholar 

  56. Sergey EL (2002) Modeling and identification of induction micromachines in microelectromechanical systems applications. Energy Convers Manag 43(16):2123–2133

    Article  Google Scholar 

  57. Koji A (2002) Characterization of heterogeneous systems by dielectric spectroscopy. Prog Polym Sci 27(8):1617–1659

    Article  Google Scholar 

  58. Castro-Giráldez M, Dols L, Toldrá F, Fito P (2011) Development of a dielectric spectroscopy technique for the determination of key biochemical markers of meat quality. Food Chem 127(1):228–233

    Article  Google Scholar 

  59. Esbensen K, Guyot D, Westad F, Houmøller LP (2001) Multivariate data analysis – in practice: an introduction to multivariate data analysis and experimental design. CAMO ASA, Oslo

    Google Scholar 

  60. Nielsen KE, Dittmer J, Malmendal A, Nielsen NC (2008) Quantitative analysis of constituents in heavy fuel oil by 1H nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis. Energy Fuel 22(6):4070–4076

    Article  CAS  Google Scholar 

  61. Ulrich C, Petersson H, Sundgren H, Björefors F, Krantz-Rülcker C (2007) Simultaneous estimation of soot and diesel contamination in engine oil using electrochemical impedance spectroscopy. Sens Actuators B Chem 127(2):613–618

    Article  Google Scholar 

  62. Ichikawa M, Nonaka N, Nomura M, Takada I, Ishimori S (1995) Headspace gas chromatography analysis of uncombusted gasoline diluent in used gasoline engine oils. J Anal Appl Pyrolysis 32:233–242

    Article  CAS  Google Scholar 

  63. Levermore DM, Josowicz M, Rees WS, Janata J (2001) Headspace analysis of engine oil by gas chromatography/mass spectrometry. Anal Chem 73(6):1361–1365

    Article  CAS  Google Scholar 

  64. Sepcic K, Josowicz M, Janata J, Selby T (2004) Diagnosis of used engine oil based on gas phase analysis. Analyst 129(11):1070–1075

    Article  CAS  Google Scholar 

  65. Cotter RJ (2004) Time-of-flight mass spectrometry. In: Encyclopedia of genetics, genomics, proteomics and bioinformatics. Wiley. doi:10.1002/047001153X.g301302

  66. Merchant M, Weinberger SR (2000) Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 21(6):1164–1177

    Article  CAS  Google Scholar 

  67. Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Barea EM, Palomares E (2008) A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorg Chim Acta 361(3):684–698

    Article  CAS  Google Scholar 

  68. Sohn JH, Atzeni M, Zeller L, Pioggia G (2008) Characterisation of humidity dependence of a metal oxide semiconductor sensor array using partial least squares. Sens Actuators B Chem 131(1):230–235

    Article  Google Scholar 

  69. Lieberzeit P, Rehman A, Najafi B, Dickert F (2008) Real-life application of a QCM-based e-nose: quantitative characterization of different plant-degradation processes. Anal Bioanal Chem 391(8):2897–2903

    Article  CAS  Google Scholar 

  70. Lieberzeit P, Rehman A, Iqbal N, Najafi B, Dickert F (2009) QCM sensor array for monitoring terpene emissions from odoriferous plants. Monatsh Chem 140(8):947–952

    Article  CAS  Google Scholar 

  71. Capone S, Zuppa M, Presicce DS, Francioso L, Casino F, Siciliano P (2008) Metal oxide gas sensor array for the detection of diesel fuel in engine oil. Sens Actuators B Chem 131(1):125–133

    Article  Google Scholar 

  72. Szczurek A, Szecówka PM, Licznerski BW (1999) Application of sensor array and neural networks for quantification of organic solvent vapours in air. Sens Actuators B Chem 58(1–3):427–432

    Article  Google Scholar 

  73. Sobański T, Szczurek A, Nitsch K, Licznerski BW, Radwan W (2006) Electronic nose applied to automotive fuel qualification. Sens Actuators B Chem 116(1–2):207–212

    Article  Google Scholar 

  74. Mujahid A, Lieberzeit PA, Dickert FL (2010) Chemical sensors based on molecularly imprinted sol-gel materials. Materials 3(4):2196–2217

    Article  CAS  Google Scholar 

  75. Latif U, Rohrer A, Lieberzeit P, Dickert F (2011) QCM gas phase detection with ceramic materials—VOCs and oil vapors. Anal Bioanal Chem 400(8):2457–2462

    Article  CAS  Google Scholar 

  76. Latif U, Mujahid A, Afzal A, Sikorski R, Lieberzeit P, Dickert F (2011) Dual and tetraelectrode QCMs using imprinted polymers as receptors for ions and neutral analytes. Anal Bioanal Chem 400(8):2507–2515

    Article  CAS  Google Scholar 

  77. Dickert FL, Hayden O (2000) Molecular fingerprints using imprinting techniques. Adv Mater 12(4):311–314

    Article  CAS  Google Scholar 

  78. Dickert FL, Forth P, Lieberzeit PA, Voigt G (2000) Quality control of automotive engine oils with mass-sensitive chemical sensors – QCMs and molecularly imprinted polymers. Fresenius J Anal Chem 366(8):802–806

    Article  CAS  Google Scholar 

  79. Hayden O, Bindeus R, Haderspöck C, Mann K-J, Wirl B, Dickert FL (2003) Mass-sensitive detection of cells, viruses and enzymes with artificial receptors. Sens Actuators B Chem 91(1–3):316–319

    Article  Google Scholar 

  80. Lieberzeit PA, Findeisen A, Mähner J, Samardzic R, Pitkänen J, Anttalainen O, Dickert FL (2010) Artificial receptor layers for detecting chemical and biological threats. Procedia Eng 5:381–384

    Article  Google Scholar 

  81. Dickert F, Lieberzeit P, Hayden O, Gazda-Miarecka S, Halikias K, Mann K, Palfinger C (2003) Chemical sensors – from molecules, complex mixtures to cells – supramolecular imprinting strategies. Sensors 3(9):381–392

    Article  CAS  Google Scholar 

  82. Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. J Am Chem Soc 117:7105–7111

    Article  CAS  Google Scholar 

  83. Mosbach K, Ramstrom O (1996) The emerging technique of molecular imprinting and its future impact on biotechnology. Nat Biotechnol 14:163–170

    Article  CAS  Google Scholar 

  84. Andersson LI, Nicholls IA, Mosbach K (1996) Molecular imprinting: the current status and future development of polymer-based recognition systems. In: Bittar EE, Danielsson B, Bulow L (eds) Advances in molecular and cell biology, vol 15. Elsevier, Amsterdam pp 651–670

  85. Dickert FL, Hayden O (1999) Molecular imprinting in chemical sensing. TrAC Trends Anal Chem 18(3):192–199

    Article  CAS  Google Scholar 

  86. Dickert FL, Greibl W, Rohrer A, Voigt G (2001) Sol–gel-coated quartz crystal microbalances for monitoring automotive oil degradation. Adv Mater 13(17):1327–1330

    Article  CAS  Google Scholar 

  87. Dickert F, Hayden O, Lieberzeit P, Palfinger C, Pickert D, Wolff U, Scholl G (2003) Borderline applications of QCM-devices: synthetic antibodies for analytes in both nm- and μm-dimensions. Sens Actuators B Chem 95(1–3):20–24

    Article  Google Scholar 

  88. Lieberzeit P, Glanznig G, Jenik M, Sylwia Gazda-Miarecka S, Dickert F, Leidl A (2005) Softlithography in chemical sensing – analytes from molecules to cells. Sensors 5(12):509–518

    Article  CAS  Google Scholar 

  89. Lieberzeit PA, Glanznig G, Leidl A, Voigt N, Dickert FL (2006) Nanostructured polymers for detecting chemical changes during engine oil degradation. Sens J IEEE 6(3):529–535

    Article  CAS  Google Scholar 

  90. Lieberzeit PA, Afzal A, Podlipna D, Krassnig S, Blumenstock H, Dickert FL (2007) Printing materials in micro- and nano-scale: systems for process control. Sens Actuators B Chem 126(1):153–158

    Article  Google Scholar 

  91. Lieberzeit P, Afzal A, Glanzing G, Dickert FL (2007) Molecularly imprinted sol–gel nanoparticles for mass-sensitive engine oil degradation sensing. Anal Bioanal Chem 389(2):441–446

    Article  CAS  Google Scholar 

  92. Dickert FL, Forth P, Bulst W-E, Fischerauer G, Knauer U (1998) SAW devices-sensitivity enhancement in going from 80 MHz to 1 GHz. Sens Actuators B Chem 46(2):120–125

    Article  Google Scholar 

  93. Barié N, Stahl U, Rapp M (2010) Vacuum-deposited wave-guiding layers on STW resonators based on LiTaO3 substrate as love wave sensors for chemical and biochemical sensing in liquids. Ultrasonics 50(6):606–612

    Article  Google Scholar 

  94. Mujahid A, Afzal A, Glanzing G, Leidl A, Lieberzeit PA, Dickert FL (2010) Imprinted sol–gel materials for monitoring degradation products in automotive oils by shear transverse wave. Anal Chim Acta 675(1):53–57

    Article  CAS  Google Scholar 

  95. Sauerbrey G (1959) Verwendung von schwingquarzen zur waegung dunner schichten und zur mikrowaegung. Z Phys 155:206–222

    Article  CAS  Google Scholar 

  96. Moon S-I, Paek K-K, Lee Y-H, Kim J-K, Kim S-W, Ju B-K (2006) Multiwall carbon nanotube sensor for monitoring engine oil degradation. Electrochem Solid State Lett 9(8):H78–H80

    Article  CAS  Google Scholar 

  97. Latif U, Dickert FL (2011) Conductometric sensors for monitoring degradation of automotive engine oil. Sensors 11(9):8611–8625

    Article  CAS  Google Scholar 

  98. Terradillos J, Aranburu I, Arnaiz A, Ciria JI (2005) Base number prediction through spectroscopy and chemometrics. In: Proceedings of the international conference lubrication excellence 2005, San Antonio

  99. Chuang FS, Winefordner JD (1974) Jet engine oil analysis by atomic absorption spectrometry with graphite filament. Appl Spectrosc 28(3):215–218

    Article  CAS  Google Scholar 

  100. Bings NH (2002) Direct determination of metals in lubricating oils by laser ablation coupled to inductively coupled plasma time-of-flight mass spectrometry. J Anal At Spectrom 17(8):759–767

    Article  CAS  Google Scholar 

  101. Potts PJ, Ellis AT, Holmes M, Kregsamer P, Streli C, West M, Wobrauschek P (2000) X-ray fluorescence spectrometry. J Anal At Spectrom 15(10):1417–1442

    Article  CAS  Google Scholar 

  102. Marguí E, Queralt I, Hidalgo M (2009) Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material. TrAC Trends Anal Chem 28(3):362–372

    Article  Google Scholar 

  103. Yang Z, Hou X, Jones BT (2003) Determination of wear metals in engine oil by mild acid digestion and energy dispersive X-ray fluorescence spectrometry using solid phase extraction disks. Talanta 59(4):673–680

    Article  CAS  Google Scholar 

  104. Markus WS (1999) Photoacoustic spectroscopy, methods and instrumentation. In: John L (ed) Encyclopedia of spectroscopy and spectrometry, 2nd edn. Academic, Oxford, pp 2146–2150

    Google Scholar 

  105. Koskinen V, Fonsen J, Kauppinen J, Kauppinen I (2006) Extremely sensitive trace gas analysis with modern photoacoustic spectroscopy. Vib Spectrosc 42(2):239–242

    Article  CAS  Google Scholar 

  106. Hodgson P, Quan KM, MacKenzie HA, Freeborn SS, Hannigan J, Johnston EM, Greig F, Binnie TD (1995) Application of pulsed laser photoacoustic sensors in monitoring oil contamination in water. Sens Actuators B Chem 29(1–3):339–344

    Article  Google Scholar 

  107. Foster NS, Amonette JE, Autrey T, Ho JT (2001) Detection of trace levels of water in oil by photoacoustic spectroscopy. Sens Actuators B Chem 77(3):620–624

    Article  Google Scholar 

  108. Adams MJ, Romeo MJ, Rawson P (2007) FTIR analysis and monitoring of synthetic aviation engine oils. Talanta 73(4):629–634

    Article  CAS  Google Scholar 

  109. Gabriele R (2005) Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev 57(8):1109–1143

    Article  Google Scholar 

  110. Salzer R (2002) Book review: near-infrared spectroscopy. Principles, instruments, applications. Edited by HW Siesler, Y Ozaki, S Kawata and HM Heise. Angew Chem Int Ed Engl 41(22):4347–4348

  111. Villar A, Gorritxategi E, Otaduy D, Ciria JI, Fernandez LA (2011) Chemometric methods applied to the calibration of a Vis–NIR sensor for gas engine’s condition monitoring. Anal Chim Acta 705(1–2):174–181

    Article  CAS  Google Scholar 

  112. Cozzolino D, Smyth HE, Gishen M (2003) Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins. J Agric Food Chem 51(26):7703–7708

    Article  CAS  Google Scholar 

  113. Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N (2007) A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal 44(3):683–700

    Article  CAS  Google Scholar 

  114. Toyota (2010) Tercel owner’s manual. Toyota, Japan

  115. Turner JD, Austin L (2003) Electrical techniques for monitoring the condition of lubrication oil. Meas Sci Technol 14(10):1794

    Article  CAS  Google Scholar 

  116. Gebarin S, Fitch J (2004) Determining proper oil and filter change intervals: can onboard automotive sensors help? Practicing Oil Analysis Magazine, January 2004

  117. GM (2012) Oil life system (OLS) andsimplified maintenance schedule. Available via http://www.mycertifiedservice.com/_res/pdf/OLS1.pdf. Accessed 27 Feb 2012

  118. Basu A, Berndorfer A, Buelna C, Campbell J, Ismail K, Lin Y, Rodriguez L, Wang SS (2000) Smart sensing of oil degradation and oil level measurements in gasoline engines, SAE Technical Paper Series 2000-01-1366, SAE 2000 World Congress, Detroit, Michigan

  119. Bodensohn A, Haueis M, Mäckel R, Pulvermüller M, Schreiber T (2005) System monitoring for lifetime prediction in automotive industry. Advanced microsystems for automotive applications. VDI-Buch, 2005, Part 2, 149–158

  120. Bennett JW, Matsiev L, Uhrich M, Kolosov O, Bryning Z (2005) New solid state oil condition sensor for real time engine oil condition monitoring. Symyx Technologies Inc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Mujahid.

Additional information

Dedicated to Prof. Dr. Günter Grampp on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mujahid, A., Dickert, F.L. Monitoring automotive oil degradation: analytical tools and onboard sensing technologies. Anal Bioanal Chem 404, 1197–1209 (2012). https://doi.org/10.1007/s00216-012-6186-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6186-1

Keywords

Navigation