Skip to main content
Log in

Mass-independent isotope fractionation of heavy elements measured by MC-ICPMS: a unique probe in environmental sciences

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This article overviews recent developments in the use of multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) in studies of mass-independent isotope chemistry of heavy elements. Origins of mass-independent isotope effects and their relevance to isotope ratio measurements by MC-ICPMS are briefly described. The extent to which these effects can affect instrumental mass bias in MC-ICPMS is critically discussed on the basis of the experimental observations. Furthermore, key findings reported in studies of mass-independent isotope fractionation (MIF) of mercury in the field of environmental sciences are reviewed. MIF of heavy elements is not only of interest from a fundamental point of view, but also provides scientists with a new and effective means of studying the biogeochemistry of these elements.

Mechanisms of mass-independent stable isotope fractionation measured by MC-ICPMS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Wolfsberg M, Van Hook WA, Paneth P (2010) Isotope effects in the chemical, geological, and bio sciences. Springer, Dordrecht

    Google Scholar 

  2. Baranov V, Leonov A, Lysycha V (2000) In: Baranov V (ed) Isotopes: properties, separation, use. Izdat, Moscow, pp 14–34, In Russian

    Google Scholar 

  3. Thiemens M (2003) In: Holland H, Turekian K (eds) Treatise on geochemistry, Vol. 4. Elsevier, pp 1–24

  4. Bergquist BA, Blum JD (2007) Science 318:417–420

    Article  CAS  Google Scholar 

  5. Fujii T, Moynier F, Albarède F (2009) Chem Geol 267:139–156

    Article  CAS  Google Scholar 

  6. Fujii T, Moynier F, Albarède F (2009) Chem Geol 267:157–160

    Article  CAS  Google Scholar 

  7. Koch K, Koepernik K, Van Neck D, Rosner H, Cottenier S (2010) Phys Rev A 81:032507

    Article  Google Scholar 

  8. Bigeleisen J (1996) J Am Chem Soc 118:3676–3680

    Article  CAS  Google Scholar 

  9. Schauble EA (2007) Geochim Cosmochim Acta 71:2170–2189

    Article  CAS  Google Scholar 

  10. Buchachenko A (2001) J Phys Chem A 105:9995–10011

    Article  CAS  Google Scholar 

  11. Young ED, Galy A, Nagahara H (2002) Geochim Cosmochim Acta 66:1095–1104

    Article  CAS  Google Scholar 

  12. Blum JD, Bergquist BA (2007) Anal Bioanal Chem 388:353–359

    Article  CAS  Google Scholar 

  13. Epov VN, Berail S, Jimenez-Moreno M, Perrot V, Pecheyran C, Amouroux D, Donard OFX (2010) Anal Chem 82:5652–5662

    Article  CAS  Google Scholar 

  14. Foucher D, Hintelmann H (2006) Anal Bioanal Chem 384:1470–1478

    Article  CAS  Google Scholar 

  15. Bergquist BA, Blum JD (2009) Elements 5:353–357

    Article  CAS  Google Scholar 

  16. Yang L, Sturgeon RE (2009) Anal Bioanal Chem 393:377–385

    Article  CAS  Google Scholar 

  17. Meija J, Yang L, Sturgeon R, Mester Z (2009) Anal Chem 81:6774–6778

    Article  CAS  Google Scholar 

  18. Epov VN, Rodriguez-Gonzalez P, Sonke JE, Tessier E, Amouroux D, Bourgoin LM, Donard OFX (2008) Anal Chem 80:3530–3538

    Article  CAS  Google Scholar 

  19. Albarède F, Telouk P, Blichert-Toft J, Boyet M, Agranier A, Nelson B (2004) Geochim Cosmochim Acta 68:2725–2744

    Article  Google Scholar 

  20. Mead C, Johnson TM (2010) Anal Bioanal Chem 397:1529–1538

    Article  CAS  Google Scholar 

  21. Newman K, Freedman P, Williams J, Belshaw N, Halliday A (2009) J Anal At Spectrom 24:742–751

    Article  CAS  Google Scholar 

  22. Niu H, Houk RS (1996) Spectrochim Acta B 51:779–815

    Article  Google Scholar 

  23. Andrén H, Rodushkin I, Stenberg A, Malinovsky D, Baxter DC (2004) J Anal At Spectrom 19:1217–1224

    Article  Google Scholar 

  24. Jackson TA, Whittle DM, Evans MS, Muir DCG (2008) Appl Geochem 23:547–571

    Article  CAS  Google Scholar 

  25. Yin R, Feng X, Shi W (2010) Appl Geochem 25:1467–1477

    Article  CAS  Google Scholar 

  26. Malinovsky D, Latruwe K, Moens L, Vanhaecke F (2010) J Anal At Spectrom 25:950–956

    Article  CAS  Google Scholar 

  27. Carignan J, Estrade N, Sonke JE, Donard OFX (2009) Environ Sci Technol 43:5660–5664

    Article  CAS  Google Scholar 

  28. Zheng W, Hintelmann H (2010) J Phys Chem A 114:4238–4245

    Article  CAS  Google Scholar 

  29. Knyazev D, Myasoedov N (2001) Sep Sci Technol 36:1677–1696

    Article  CAS  Google Scholar 

  30. Angeli I (2004) At Data Nucl Data Tables 87:185–206

    Article  CAS  Google Scholar 

  31. Lide DR (ed) (1990) Handbook of chemistry and physics, 71st edn. CRC, Boca Raton

  32. Das R, Salters V, Odom A (2009) Geochem Geophys Geosyst 10:Q11012

    Article  Google Scholar 

  33. Gantner N, Hintelmann H, Zheng W, Muir DC (2009) Environ Sci Technol 43:9148–9154

    Article  CAS  Google Scholar 

  34. Laffont L, Sonke JE, Maurice L, Hintelmann H, Pouilly M, Bacarreza YS, Perez T, Behra P (2009) Environ Sci Technol 43:8985–8990

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Two anonymous referees are gratefully acknowledged for constructive comments on the initial version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Malinovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malinovsky, D., Vanhaecke, F. Mass-independent isotope fractionation of heavy elements measured by MC-ICPMS: a unique probe in environmental sciences. Anal Bioanal Chem 400, 1619–1624 (2011). https://doi.org/10.1007/s00216-011-4856-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4856-z

Keywords

Navigation