Skip to main content
Log in

Chemical sensing and imaging with pulsed terahertz radiation

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Over the past decade, terahertz spectroscopy has evolved into a versatile tool for chemically selective sensing and imaging applications. In particular, the potential to coherently generate and detect short, and hence, broadband terahertz pulses led to the development of efficient and compact spectrometers for this interesting part of the electromagnetic spectrum, where common packaging materials are transparent and many chemical compounds show characteristic absorptions. Although early proof-of-principle demonstrations have shown the great potential of terahertz spectroscopy for sensing and imaging, the technology still often lacks the required sensitivity and suffers from its intrinsically poor spatial resolution. In this review we discuss the current potential of terahertz pulse spectroscopy and highlight recent technological advances geared towards both enhancing spectral sensitivity and increasing spatial resolution.

Artist's view of a terahertz pulse emitted from a photoconductive antenna probing the vibrational modes of a sugar molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Walther M, Plochocka P, Fischer B, Helm H, Jepsen PU (2002) Biopolymers 67:310–313

    Article  CAS  Google Scholar 

  2. Melinger JS, Harsha SS, Laman N, Grischkowsky D (2009) J Opt Soc Am B 26:A79–A89

    Article  CAS  Google Scholar 

  3. Hunsche S, Koch M, Brener I, Nuss MC (1998) Opt Commun 150:22–26

    Article  CAS  Google Scholar 

  4. Jördens C, Scheller M, Breitenstein B, Selmar D, Koch M (2009) J Biol Phys 35:255–264

    Article  Google Scholar 

  5. Melinger JS, Laman N, Grischkowsky D (2008) Appl Phys Lett 93:011102

    Article  Google Scholar 

  6. Brown ER, Bjarnason JE, Chan TLJ, Lee AWM, Celis MA (2004) Appl Phys Lett 84:3438–3440

    Article  CAS  Google Scholar 

  7. Fischer BM, Hoffmann M, Helm H, Wilk R, Rutz F, Kleine-Ostmann T, Koch M, Jepsen PU (2005) Opt Express 13:5205–5215

    Article  CAS  Google Scholar 

  8. Markelz AG, Roitberg A, Heilweil EJ (2000) Chem Phys Lett 320:42–48

    Article  CAS  Google Scholar 

  9. Markelz AG, Knab JR, Chen JY, He YF (2007) Chem Phys Lett 442:413–417

    Article  CAS  Google Scholar 

  10. Fischer BM, Walther M, Jepsen PU (2002) Phys Med Biol 47:3807–3814

    Article  CAS  Google Scholar 

  11. Woodward RM, Wallace VP, Arnone DD, Linfield EH, Pepper M (2003) J Biol Phys 29:257–261

    Article  CAS  Google Scholar 

  12. Jepsen PU, Clark SJ (2007) Chem Phys Lett 442:275–280

    Article  CAS  Google Scholar 

  13. Allis DG, Fedor AM, Korter TM, Bjarnason JE, Brown ER (2007) Chem Phys Lett 440:203–209

    Article  CAS  Google Scholar 

  14. Auston DH, Cheung KP, Smith PR (1984) Appl Phys Lett 45:284–286

    Article  Google Scholar 

  15. Grischkowsky D, Keiding S, Vanexter M, Fattinger C (1990) J Opt Soc Am B 7:2006–2015

    Article  CAS  Google Scholar 

  16. Winnewisser C, Jepsen PU, Schall M, Schyja V, Helm H (1997) Appl Phys Lett 70:3069–3071

    Article  CAS  Google Scholar 

  17. Wu Q, Zhang XC (1997) Appl Phys Lett 71:1285–1286

    Article  CAS  Google Scholar 

  18. Franz M, Fischer BM, Walther M (2008) Appl Phys Lett 92:021107

    Article  Google Scholar 

  19. Walther M, Fischer BM, Jepsen PU (2003) Chem Phys 288:261–268

    Article  CAS  Google Scholar 

  20. Jepsen PU, Moller U, Merbold H (2007) Opt Express 15:14717–14737

    Article  CAS  Google Scholar 

  21. Jepsen PU, Jensen JK, Moller U (2008) Opt Express 16:9318–9331

    Article  CAS  Google Scholar 

  22. Hunger J, Stoppa A, Thoman A, Walther M, Buchner R (2009) Chem Phys Lett 471:85–91

    Article  CAS  Google Scholar 

  23. Yada H, Nagai M, Tanaka K (2008) Chem Phys Lett 464:166–170

    Article  CAS  Google Scholar 

  24. Fischer BM, Helm H, Jepsen PU (2007) Proc IEEE 95:1592–1604

    Article  CAS  Google Scholar 

  25. Yamaguchi M, Miyamaru F, Yamamoto K, Tani M, Hangyo M (2005) Appl Phys Lett 86:053903

    Article  Google Scholar 

  26. Gervasio FL, Cardini G, Salvi PR, Schettino V (1998) J Phys Chem A 102:2131–2136

    Article  CAS  Google Scholar 

  27. Walther M, Fischer B, Schall M, Helm H, Jepsen PU (2000) Chem Phys Lett 332:389–395

    Article  CAS  Google Scholar 

  28. Nielsen K, Rasmussen HK, Adam AJL, Planken PCM, Bang O, Jepsen PU (2009) Opt Express 17:8592–8601

    Article  CAS  Google Scholar 

  29. Atakaramians S, Shahraam AV, Fischer BM, Abbott D, Monro TM (2008) Opt Express 16:8845–8854

    Article  Google Scholar 

  30. Laman N, Harsha SS, Grischkowsky D, Melinger JS (2008) Opt Express 16:4094–4105

    Article  CAS  Google Scholar 

  31. Laman N, Harsha SS, Grischkowsky D (2008) Appl Spectrosc 62:319–326

    Article  CAS  Google Scholar 

  32. Laman N, Harsha SS, Grischkowsky D, Melinger JS (2008) Biophys J 94:1010–1020

    Article  CAS  Google Scholar 

  33. Zhang JQ, Grischkowsky D (2004) Opt Lett 29:1617–1619

    Article  Google Scholar 

  34. Walther M, Freeman MR, Hegmann FM (2005) Appl Phys Lett 87:261107

    Article  Google Scholar 

  35. Wang KL, Mittleman DM (2004) Nature 432:376–379

    Article  CAS  Google Scholar 

  36. Byrne MB, Cunningham J, Tych K, Burnett AD, Stringer MR, Wood CD, Dazhang L, Lachab M, Linfield EH, Davies AG (2008) Appl Phys Lett 93:182904

    Article  Google Scholar 

  37. Fischer B, Hoffmann M, Helm H, Modjesch G, Jepsen PU (2005) Semicond Sci Technol 20:S246–S253

    Article  CAS  Google Scholar 

  38. Chen Q, Jiang ZP, Xu GX, Zhang XC (2000) Opt Lett 25:1122–1124

    Article  CAS  Google Scholar 

  39. Chen HT, Kersting R, Cho GC (2003) Appl Phys Lett 83:3009–3011

    Article  CAS  Google Scholar 

  40. van der Valk NCJ, Planken PCM (2002) Appl Phys Lett 81:1558–1560

    Article  Google Scholar 

  41. Bitzer A, Ortner A, Walther M (2010) Appl Opt 49:E1–E6

  42. Mitrofanov O, Brener I, Harel R, Wynn JD, Pfeiffer LN, West KW, Federici J (2000) Appl Phys Lett 77:3496–3498

    Article  CAS  Google Scholar 

  43. Seo MA, Adam AJL, Kang JH, Lee JW, Jeoung SC, Park QH, Planken PCM, Kim DS (2007) Opt Express 15:11781–11789

    Article  CAS  Google Scholar 

  44. Bitzer A, Merbold H, Thoman A, Feurer T, Helm H, Walther M (2009) Opt Express 17:3826–3834

    Article  CAS  Google Scholar 

  45. Mittleman DM, Jacobsen RH, Nuss MC (1996) IEEE J Sel Top Quantum Electron 2:679–692

    Article  CAS  Google Scholar 

  46. Scheller M, Koch M (2009) Opt Express 17:17723–17733

    Article  CAS  Google Scholar 

  47. Huber AJ, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R (2008) Nano Lett 8:3766–3770

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.W. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) through grant no. WA 2641, by the Baden-Württemberg Ministry for Science and Arts Research Seed Capital (RiSC) for young researchers, and by the University of Freiburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Walther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walther, M., Fischer, B.M., Ortner, A. et al. Chemical sensing and imaging with pulsed terahertz radiation. Anal Bioanal Chem 397, 1009–1017 (2010). https://doi.org/10.1007/s00216-010-3672-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3672-1

Keywords

Navigation