Skip to main content
Log in

Analysis of bulk and inorganic degradation products of stones, mortars and wall paintings by portable Raman microprobe spectroscopy

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work reports the use of a portable Raman microprobe spectrometer for the analysis of bulk and decaying compounds in carbonaceous materials such as stones, mortars and wall paintings. The analysed stones include limestone, dolomite and carbonaceous sandstone, gypsum and calcium oxalate, both mono- and dihydrated, being the main inorganic degradation products detected. Mortars include bulk phases with pure gypsum, calcite and mixtures of both or with sand, soluble salts being the most important degradation products. The pigments detected in several wall paintings include Prussian blue, iron oxide red, iron oxide yellow, vermilion, carbon black and lead white. Three different decaying processes have been characterised in the mortars of the wall paintings: (a) a massive absorption of nitrates that reacted with calcium carbonate and promoted the unbinding of pigment grains, (b) the formation of black crusts in the vault of the presbytery and (c) the thermodecomposition of pigments due to a fire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3
Fig. 4
Fig. 5a,b
Fig. 6
Fig. 7a,b

Similar content being viewed by others

References

  1. Maseey SW (1999) Sci Total Environ 227:109–201

    Article  Google Scholar 

  2. Chabas A, Jeanette D (2001) Environ Geol 40:359–368

    Article  CAS  Google Scholar 

  3. Chen J, Blume HP, Beyer L (2000) Catena 39:121–146

    Article  CAS  Google Scholar 

  4. Viles HA, Taylor MP, Yates TJS, Massey SW (2002) Sci Total Environ 292:215–229

    Article  CAS  PubMed  Google Scholar 

  5. El-Metwally AA, Genedi AM, Mamdouh A (2000) J Environ Res 2:103–121

    CAS  Google Scholar 

  6. Nord AG, Tronner K (1995) Water Air Soil Pollut 85:2719–2724

    CAS  Google Scholar 

  7. Del Monte M (1992) Analusis 20:M20–M23

    Google Scholar 

  8. Seaward MRD, Giacobini C (1988) Stud Geobot 8:3–11

    Google Scholar 

  9. Del Monte M, Sabbioni C, Zappia G (1987) Sci Total Environ 67:17–39

    Article  Google Scholar 

  10. Del Monte M, Sabbioni C (1987) Stud Conserv 32:114–121

    Google Scholar 

  11. Van Grieken R, Delalieux F, Gysels K (1998) Pure Appl Chem 70:2327–2331

    Google Scholar 

  12. Ausset P, Bannery F, Del Monte M, Lefevre RA (1998) Atmos Environ 32:2859–2863

    Article  CAS  Google Scholar 

  13. Sabbioni C, Zappia G, Riontino C, Blanco-Varela MT, Aguilera J, Puertas F, Van Balen K, Toumbakari EE (2001) Atmos Environ 35:539–548

    Article  CAS  Google Scholar 

  14. Sweevers H, Delalieux F, Van Grieken R (1998) Atmos Environ 32:733–748

    Article  CAS  Google Scholar 

  15. Gobbi G, Zappia G, Sabbioni C (1998) Atmos Environ 32:783–789

    Article  CAS  Google Scholar 

  16. Moioli P, Seccaroni C (2000) X-Ray Spectrom 29:48–52

  17. Perardi A, Appolonia L, Mirti P (2003) Anal Chim Acta 480:317–325

    Article  CAS  Google Scholar 

  18. Edwards HGM, Drummond L, Russ J (1999) J Raman Spectrosc 30:421–428

    Article  CAS  Google Scholar 

  19. Edwards HGM, Brooke CJ, Tait JKF (1997) J Raman Spectrosc 28:95–98

    Article  CAS  Google Scholar 

  20. Edwards HGM, Newton EM, Russ J (2000) J Mol Struct 550–551:245–256

  21. Daniilia S, Bikiaris D, Burgio L, Gavala P, Clark RHJ, Chryssoulakis Y (2002) J Raman Spectrosc 33:807–814

    Article  CAS  Google Scholar 

  22. Zuo J, Zhao X, Wu R, Du G, Xu C, Wang C (2003) J Raman Spectrosc 34:121–125

    Article  CAS  Google Scholar 

  23. Castro K, Rodriguez-Laso MD, Fernández LA, Madariaga JM (2001) J Raman Spectrosc 33:17–25

    Article  Google Scholar 

  24. Martens W, Frost RL, Kloprogge JT, Williams PA (2003) J Raman Spectrosc 34:145–151

    Article  CAS  Google Scholar 

  25. Brown KL, Clark RJH (2002) Anal Chem 74:3658–3661

    Article  CAS  PubMed  Google Scholar 

  26. Beyssac O, Goffé B, Petitet JP, Froigneux E, Moreau M, Rouzaud JN (2003) Spectrochim Acta A 59:2267–2276

    Article  Google Scholar 

  27. Vandenabeele P, Grimaldi DM, Edwards HGM, Moens L (2003) Spectrochim Acta A 59:2221–2229

    Article  Google Scholar 

  28. Frost RL, Martens W, Kloprogge JT, Williams PA (2002) J Raman Spectrosc 33:801–806

    Article  CAS  Google Scholar 

  29. Smith DC (2003) Spectrochim Acta A 59:2353–2369

    Article  Google Scholar 

  30. Castro K, Pérez M, Rodríguez-Laso MD, Madariaga JM (2003) Anal Chem 75:214A–221A

    CAS  Google Scholar 

  31. http://www.ehu.es/udps/database/database.html (login: spectra, password: database)

  32. Louis M, Del Cura MA, Spairani Y,De Blas D (2001) Mater Construcc 51:23–37

    CAS  Google Scholar 

  33. Prieto B, Seaward MRD, Edwards HGM, Rivas T, Silva B (1999) Spectrochim Acta A 55:211–217

    Google Scholar 

  34. Fassina V (1991) Weathering and air pollution. Bari: comunitá sdelle Universitá mediterranee, Scuola universitaria Coinservazione dei monumenti, pp 67–68

  35. Ausset P, Lefevre R, Phillipon J, Venet C (1992) In: Decrouez D, Chamay J, Zerra F (eds) La conservazione del monumenti nel bacino del Mediterraneo. Muséum d’historie naturellle et Musée d’art et d’historie, Geneva, pp 121–139

  36. Ortega JJ, Ariño X, Stal LJ, Saiz C (1994) Geomicrobiol J 12:15–22

    Google Scholar 

  37. Backbier L, Rousseau (1993) Anal Chim Acta 283:855–867

    Article  CAS  Google Scholar 

  38. Edwards HGM, Garcia-Pichel F, Newton EM, Wyn-Williams DD (2000) Spectrochim Acta A 56:193–200

    Article  Google Scholar 

  39. Del Monte M, Sabbioni C, Vittori O (1984) Sci Total Environ 36:369–376

    Article  Google Scholar 

  40. Franzini M, Gratziu C, Wicks E (1984) Soc Ital Mineral Petrog 39:59–70

    CAS  Google Scholar 

  41. Edwards HGM (1991) Spectrochim Acta A 47:1531–1539

    Article  Google Scholar 

  42. Burgio L, Clark RJH, Steven F (2001) Analyst 126:222–227

    Article  CAS  PubMed  Google Scholar 

  43. Castro K, Pérez-Alonso M, Rodriguez-Laso MD, Madariaga JM (2004) J Raman Spectrosc (in press)

Download references

Acknowledgements

This work has been financially supported by projects No. UPV 14590/2002 and UE02-A06. M. Pérez-Alonso, I. Martinez-Arkarazo and K. Castro acknowledge the grants from the Basque Government, the University of the Basque Country (UPV/EHU) and the Spanish Government, respectively. The authors acknowledge the referees’ suggestions, especially one of them who helped us in identifying the nature of the biofilm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pérez-Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Alonso, M., Castro, K., Martinez-Arkarazo, I. et al. Analysis of bulk and inorganic degradation products of stones, mortars and wall paintings by portable Raman microprobe spectroscopy. Anal Bioanal Chem 379, 42–50 (2004). https://doi.org/10.1007/s00216-004-2496-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2496-2

Keywords

Navigation