Skip to main content
Log in

The optimum contraction of basis sets for calculating spin–spin coupling constants

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The previously proposed pcJ-n basis sets, optimized for calculating indirect nuclear spin–spin coupling constants using density functional methods, are re-evaluated for finding the optimum contraction scheme as a compromise between computational efficiency and minimizing contraction errors. An exhaustive search is performed for the H2, F2 and P2 molecules, and candidates for optimum contraction schemes are evaluated for a larger test set of 21 molecules. Using the criterion that the contraction error should not exceed the basis set error relative to the basis set limit, the optimum contraction is defined for each basis set. The results show that it is difficult to contract basis sets for calculating spin–spin coupling constants to any significant degree without losing the inherent accuracy. The work provides guidelines for searching for optimum contraction schemes for other properties and/or at theoretical levels where a systematic search is impractical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lutnaes OB, Ruden TA, Helgaker T (2004) Mag Res Chem 42:S117

    Article  CAS  Google Scholar 

  2. Helgaker T, Lutnaes OB, Jaszunski M (2007) J Chem Theor Comp 3:86

    Article  CAS  Google Scholar 

  3. Gauss J, Stanton JF (1995) J Chem Phys 103:3561

    Article  CAS  Google Scholar 

  4. Gauss J, Stanton JF (1996) J Chem Phys 104:2574

    Article  CAS  Google Scholar 

  5. Stanton JF, Gauss J, Siehl H-S (1996) Chem Phys Lett 262:183

    Article  CAS  Google Scholar 

  6. Hansen MB, Kongsted J, Toffoli D, Christiansen O (2008) J Phys Chem A 112:8436

    Article  CAS  Google Scholar 

  7. Peralta JE, Scuseria GE, Cheeseman JR, Frisch MJ (2003) Chem Phys Lett 375:452

    Article  CAS  Google Scholar 

  8. Manninen P, Vaara J (2006) J Comp Chem 27:434

    Article  CAS  Google Scholar 

  9. Ruden TA, Helgaker T, Jaszunski M (2003) Chem Phys 296:53

    Article  Google Scholar 

  10. Ruden TA, Lutnæs OB, Helgaker T, Ruud K (2003) J Chem Phys 118:9572

    Article  CAS  Google Scholar 

  11. Helgaker T, Jaszunski M, Pecul M (2008) Prog Nucl Res Spect 53:249

    Article  CAS  Google Scholar 

  12. van Mourik T, Dingley AJ (2007) ChemPhysChem 8:288

    Article  Google Scholar 

  13. Deng W, Cheeseman JR, Frisch MJ (2006) J Chem Theory Comput 2:1028

    Article  CAS  Google Scholar 

  14. Jensen F (2006) J Chem Theory Comput 2:1360

    Article  CAS  Google Scholar 

  15. Benedikt U, Auer AA, Jensen F (2008) J Chem Phys 129:064111

    Article  Google Scholar 

  16. Jensen F (2001) J Chem Phys 115:9113

    Article  CAS  Google Scholar 

  17. Jensen F (2002) J Chem Phys 116:3502

    Article  CAS  Google Scholar 

  18. Jensen F (2002) J Chem Phys 116:7372

    Article  CAS  Google Scholar 

  19. Jensen F, Helgaker T (2004) J Chem Phys 121:3462

    Article  Google Scholar 

  20. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  21. Davidson ER, Feller D (1986) Chem Rev 86:681

    Article  CAS  Google Scholar 

  22. Helgaker T, Taylor PR (1995) In: Yarkony D (ed) Modern electronic structure theory, Part II. World Scientific, New Jersey, pp 727–856

    Google Scholar 

  23. Almlöf J, Taylor PR (1987) J Chem Phys 86:4070

    Article  Google Scholar 

  24. Enevoldsen T, Oddershede J, Sauer SPA (1988) Theor Chem Acc 100:275

    Google Scholar 

  25. Provasi PF, Aucar GA, Sauer SPA (2003) Int J Mol Sci 4:231

    Article  CAS  Google Scholar 

  26. Provasi PF, Aucar GA, Sauer SPA (2004) J Phys Chem A 108:5393

    Article  CAS  Google Scholar 

  27. Helgaker T, Watson M, Handy NC (2000) J Chem Phys 113:9402

    Article  CAS  Google Scholar 

  28. Helgaker T, Jensen HJA, Jørgensen P, Olsen J, Ruud K, Ågren H, Auer AA, Bak KL, Bakken V, Christiansen O, Coriani S, Dahle P, Dalskov EK, Enevoldsen T, Fernez B, Hättig C, Hald K, Halkier A, Heiberg H, Hettema H, Jonsson D, Kirpekar S, Kobayashi R, Koch H, Mikkelsen KV, Norman P, Packer MJ, Pedersen TB, Ruden TA, Sanchez A, Saue T, Sauer SPA, Schimmelpfenning B, Sylvester-Hvid KO, Taylor PR, Vahtras O (2005) DALTON, a molecular electronic structure program, Release 20

  29. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  30. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  31. Maximoff SN, Peralta JE, Barone V, Scuseria GE (2005) J Chem Theory Comput 1:541

    Article  CAS  Google Scholar 

  32. Keal TW, Helgaker T, Salek P, Tozer DJ (2006) Chem Phys Lett 425:163

    Article  CAS  Google Scholar 

  33. London F (1937) J Phys Radium Paris 8:397

    Article  CAS  Google Scholar 

  34. McWeeny R (1962) Phys Rev 126:1028

    Article  Google Scholar 

  35. Wolinski K, Hilton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  36. Ditchfield R (1974) Mol Phys 27:789

    Article  CAS  Google Scholar 

  37. Davidson ER (1996) Chem Phys Lett 260:514

    Article  CAS  Google Scholar 

  38. Kong J, Boyd RJ (1997) J Chem Phys 107:6270

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Danish Center for Scientific Computation and the Danish Natural Science Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, F. The optimum contraction of basis sets for calculating spin–spin coupling constants. Theor Chem Acc 126, 371–382 (2010). https://doi.org/10.1007/s00214-009-0699-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0699-5

Keywords

Navigation