Skip to main content
Log in

Ethanol effects on impulsivity in two mouse strains: similarities to diazepam and ketamine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The effects of ethanol on attention and impulsivity have been contradictory.

Objectives

The aim of the present investigation is to study the effects of acute ethanol administration in measures of attention and response control in the five-choice serial reaction time task (5-CSRTT) in two strains of mice, C57BL/6JOlaHsd and CD1.

Materials and methods

Mice were trained in the 5-CSRTT and then were injected intraperitoneally (i.p.) with 0, 0.5, 1 and 2 g/kg ethanol before testing under standard parameters and in a long inter-trial interval (ITI) session, which promotes the emergence of premature responses, a measure of poor inhibitory control. To examine if the effects of ethanol in the 5-CSRTT were due to its actions at GABAA receptors or at NMDA receptors, the GABAA receptor agonist diazepam (1 and 2 mg/kg, i.p.) and the non-competitive NMDA antagonist ketamine (10 and 20 mg/kg, i.p.) were tested in long ITI sessions.

Results

Ethanol did not affect attention or impulsivity in the standard procedure, but increased premature responding in long ITI sessions. The effects of ethanol were mimicked by diazepam in both strains of mice, whereas ketamine increased premature responding only in the CD1 strain.

Conclusions

Ethanol's ability to increase impulsivity in the 5-CSRTT is mediated by both common and different neurotransmitter systems in the two strains of mice and is dependent on the task's parameters. Furthermore, ethanol did not decrease response accuracy, suggesting that attentional mechanisms are preserved after acute ethanol in mice and that the increases in impulsive behaviour are independent of attentional performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Billings CE, Demosthenes T, White TR, O'Hara DB (1991) Effects of alcohol on pilot performance in simulated flight. Aviat Space Environ Med 62:233–235

    PubMed  CAS  Google Scholar 

  • Bizarro L, Patel S, Stolerman IP (2003) Comprehensive deficits in performance of an attentional task produced by co-administering alcohol and nicotine to rats. Drug Alcohol Depend 72:287–295

    Article  PubMed  CAS  Google Scholar 

  • Cabib S, Puglisi-Allegra S, Ventura R (2002) The contribution of comparative studies in inbred strains of mice to the understanding of the hyperactive phenotype. Behav Brain Res 130:103–109

    Article  PubMed  CAS  Google Scholar 

  • Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9:361–380

    Article  PubMed  CAS  Google Scholar 

  • Carli M, Baviera M, Invernizzi RW, Balducci C (2006) Dissociable contribution of 5-HT1A and 5-HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats. Neuropsychopharmacology 31:757–767

    Article  PubMed  CAS  Google Scholar 

  • Cheng RK, MacDonald CJ, Meck WH (2006) Differential effects of cocaine and ketamine on time estimation: implications for neurobiological models of interval timing. Pharmacol Biochem Behav 85:114–122

    Article  PubMed  CAS  Google Scholar 

  • Cherpitel CJ (1993) Alcohol and injuries: a review of international emergency room studies. Addiction 88:923–937

    Article  PubMed  CAS  Google Scholar 

  • Cherpitel CJ (1999) Substance use, injury, and risk-taking dispositions in the general population. Alcohol Clin Exp Res 23:121–126

    PubMed  CAS  Google Scholar 

  • Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146:105–119

    Article  PubMed  CAS  Google Scholar 

  • Cole SO (1990) Diazepam-induced impairment of a go-no go successive discrimination. Behav Neural Biol 53:371–377

    Article  PubMed  CAS  Google Scholar 

  • Cole BJ, Robbins TW (1989) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi on performance of a 5-choice serial reaction time task in rats: implications for theories of selective attention and arousal. Behav Brain Res 33:165–179

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132:107–124

    Article  CAS  Google Scholar 

  • Critchlow B (1986) The powers of John Barleycorn. Beliefs about the effects of alcohol on social behavior. Am Psychol 41:751–764

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Laane K, Pena Y, Murphy ER, Shah Y, Probst K, Abakumova I, Aigbirhio FI, Richards HK, Hong Y, Baron JC, Everitt BJ, Robbins TW (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315:1267–1270

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Mar AC, Economidou D, Robbins TW (2008) Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 90:250–260

    Article  PubMed  CAS  Google Scholar 

  • Dougherty DM, Moeller FG, Steinberg JL, Marsh DM, Hines SE, Bjork JM (1999) Alcohol increases commission error rates for a continuous performance test. Alcohol Clin Exp Res 23:1342–1351

    PubMed  CAS  Google Scholar 

  • Dougherty DM, Marsh DM, Moeller FG, Chokshi RV, Rosen VC (2000) Effects of moderate and high doses of alcohol on attention, impulsivity, discriminability, and response bias in immediate and delayed memory task performance. Alcohol Clin Exp Res 24:1702–1711

    Article  PubMed  CAS  Google Scholar 

  • Dougherty DM, Marsh-Richard DM, Hatzis ES, Nouvion SO, Mathias CW (2008) A test of alcohol dose effects on multiple behavioral measures of impulsivity. Drug Alcohol Depend 96:111–120

    Article  PubMed  CAS  Google Scholar 

  • Ericksen KP, Trocki KF (1994) Sex, alcohol and sexually transmitted diseases: a national survey. Fam Plann Perspect 26:257–263

    Article  PubMed  CAS  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacology (Berl) 146:348–361

    Article  CAS  Google Scholar 

  • Evenden JL, Ryan CN (1999) The pharmacology of impulsive behaviour in rats VI: the effects of ethanol and selective serotonergic drugs on response choice with varying delays of reinforcement. Psychopharmacology (Berl) 146:413–421

    Article  CAS  Google Scholar 

  • Floresco SB, Tse MT, Ghods-Sharifi S (2008) Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology 33:1966–1979

    Article  PubMed  CAS  Google Scholar 

  • Givens B (1997) Effect of ethanol on sustained attention in rats. Psychopharmacology (Berl) 129:135–140

    Article  CAS  Google Scholar 

  • Givens B, McMahon K (1997) Effects of ethanol on nonspatial working memory and attention in rats. Behav Neurosci 111:275–282

    Article  PubMed  CAS  Google Scholar 

  • Greco B, Carli M (2006) Reduced attention and increased impulsivity in mice lacking NPY Y2 receptors: relation to anxiolytic-like phenotype. Behav Brain Res 169:325–334

    Article  PubMed  CAS  Google Scholar 

  • Grottick AJ, Higgins GA (2000) Effect of subtype selective nicotinic compounds on attention as assessed by the five-choice serial reaction time task. Behav Brain Res 117:197–208

    Article  PubMed  CAS  Google Scholar 

  • Hahn B, Shoaib M, Stolerman IP (2002) Nicotine-induced enhancement of attention in the five-choice serial reaction time task: the influence of task demands. Psychopharmacology (Berl) 162:129–137

    Article  CAS  Google Scholar 

  • Higgins GA, Ballard TM, Huwyler J, Kemp JA, Gill R (2003a) Evaluation of the NR2B-selective NMDA receptor antagonist Ro 63-1908 on rodent behaviour: evidence for an involvement of NR2B NMDA receptors in response inhibition. Neuropharmacology 44:324–341

    Article  PubMed  CAS  Google Scholar 

  • Higgins GA, Enderlin M, Haman M, Fletcher PJ (2003b) The 5-HT2A receptor antagonist M100, 907 attenuates motor and ‘impulsive-type’ behaviours produced by NMDA receptor antagonism. Psychopharmacology (Berl) 170:309–319

    Article  CAS  Google Scholar 

  • Maylor EA, Rabbitt PM (1993) Alcohol, reaction time and memory: a meta-analysis. Br J Psychol 84(Pt 3):301–317

    PubMed  Google Scholar 

  • McGaughy J, Sarter M (1995) Behavioral vigilance in rats: task validation and effects of age, amphetamine, and benzodiazepine receptor ligands. Psychopharmacology (Berl) 117:340–357

    Article  CAS  Google Scholar 

  • Moselhy HF, Georgiou G, Kahn A (2001) Frontal lobe changes in alcoholism: a review of the literature. Alcohol Alcohol 36:357–368

    PubMed  CAS  Google Scholar 

  • Mulvihill LE, Skilling TA, Vogel-Sprott M (1997) Alcohol and the ability to inhibit behavior in men and women. J Stud Alcohol 58:600–605

    PubMed  CAS  Google Scholar 

  • Murphy ER, Dalley JW, Robbins TW (2005) Local glutamate receptor antagonism in the rat prefrontal cortex disrupts response inhibition in a visuospatial attentional task. Psychopharmacology (Berl) 179:99–107

    Article  CAS  Google Scholar 

  • Olmstead MC, Hellemans KG, Paine TA (2006) Alcohol-induced impulsivity in rats: an effect of cue salience? Psychopharmacology (Berl) 184:221–228

    Article  CAS  Google Scholar 

  • Ortner CN, MacDonald TK, Olmstead MC (2003) Alcohol intoxication reduces impulsivity in the delay-discounting paradigm. Alcohol Alcohol 38:151–156

    PubMed  Google Scholar 

  • Patel S, Stolerman IP, Asherson P, Sluyter F (2006) Attentional performance of C57BL/6 and DBA/2 mice in the 5-choice serial reaction time task. Behav Brain Res 170:197–203

    Article  PubMed  CAS  Google Scholar 

  • Pattij T, Vanderschuren LJ (2008) The neuropharmacology of impulsive behaviour. Trends Pharmacol Sci 29:192–199

    Article  PubMed  CAS  Google Scholar 

  • Pattij T, Janssen MC, Vanderschuren LJ, Schoffelmeer AN, van Gaalen MM (2007) Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control. Psychopharmacology (Berl) 191:587–598

    Article  CAS  Google Scholar 

  • Petry NM (2001) Delay discounting of money and alcohol in actively using alcoholics, currently abstinent alcoholics, and controls. Psychopharmacology (Berl) 154:243–250

    Article  CAS  Google Scholar 

  • Poulos CX, Parker JL, Le DA (1998) Increased impulsivity after injected alcohol predicts later alcohol consumption in rats: evidence for “loss-of-control drinking” and marked individual differences. Behav Neurosci 112:1247–1257

    Article  PubMed  CAS  Google Scholar 

  • Puumala T, Sirvio J (1998) Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Neuroscience 83:489–499

    Article  PubMed  CAS  Google Scholar 

  • Puumala T, Ruotsalainen S, Jakala P, Koivisto E, Riekkinen P Jr, Sirvio J (1996) Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder. Neurobiol Learn Mem 66:198–211

    Article  PubMed  CAS  Google Scholar 

  • Rezvani AH, Levin ED (2003) Nicotine–alcohol interactions and attentional performance on an operant visual signal detection task in female rats. Pharmacol Biochem Behav 76:75–83

    Article  PubMed  CAS  Google Scholar 

  • Richards JB, Zhang L, Mitchell SH, de Wit H (1999) Delay or probability discounting in a model of impulsive behavior: effect of alcohol. J Exp Anal Behav 71:121–143

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl) 163:362–380

    Article  CAS  Google Scholar 

  • Roberto M, Madamba SG, Stouffer DG, Parsons LH, Siggins GR (2004a) Increased GABA release in the central amygdala of ethanol-dependent rats. J Neurosci 24:10159–10166

    Article  PubMed  CAS  Google Scholar 

  • Roberto M, Schweitzer P, Madamba SG, Stouffer DG, Parsons LH, Siggins GR (2004b) Acute and chronic ethanol alter glutamatergic transmission in rat central amygdala: an in vitro and in vivo analysis. J Neurosci 24:1594–1603

    Article  PubMed  CAS  Google Scholar 

  • Rohrbaugh JW, Stapleton JM, Parasuraman R, Frowein HW, Adinoff B, Varner JL, Zubovic EA, Lane EA, Eckardt MJ, Linnoila M (1988) Alcohol intoxication reduces visual sustained attention. Psychopharmacology (Berl) 96:442–446

    Article  CAS  Google Scholar 

  • Samson HH, Harris RA (1992) Neurobiology of alcohol abuse. Trends Pharmacol Sci 13:206–211

    Article  PubMed  CAS  Google Scholar 

  • Shelton KL, Balster RL (1994) Ethanol drug discrimination in rats: substitution with GABA agonists and NMDA antagonists. Behav Pharmacol 5:441–451

    PubMed  CAS  Google Scholar 

  • Spinella M (2004) Neurobehavioral correlates of impulsivity: evidence of prefrontal involvement. Int J Neurosci 114:95–104

    Article  PubMed  Google Scholar 

  • Stephens DN, Cole BJ (1996) AMPA antagonists differ from NMDA antagonists in their effects on operant DRL and delayed matching to position tasks. Psychopharmacology (Berl) 126:249–259

    Article  CAS  Google Scholar 

  • Tarter RE, Kirisci L, Habeych M, Reynolds M, Vanyukov M (2004) Neurobehavior disinhibition in childhood predisposes boys to substance use disorder by young adulthood: direct and mediated etiologic pathways. Drug Alcohol Depend 73:121–132

    Article  PubMed  Google Scholar 

  • Thiebot MH, Le Bihan C, Soubrie P, Simon P (1985) Benzodiazepines reduce the tolerance to reward delay in rats. Psychopharmacology (Berl) 86:147–152

    Article  CAS  Google Scholar 

  • Tomie A, Aguado AS, Pohorecky LA, Benjamin D (1998) Ethanol induces impulsive-like responding in a delay-of-reward operant choice procedure: impulsivity predicts autoshaping. Psychopharmacology (Berl) 139:376–382

    Article  CAS  Google Scholar 

  • van Gaalen MM, Brueggeman RJ, Bronius PF, Schoffelmeer AN, Vanderschuren LJ (2006) Behavioral disinhibition requires dopamine receptor activation. Psychopharmacology (Berl) 187:73–85

    Article  CAS  Google Scholar 

  • West R, Wilding J, French D, Kemp R, Irving A (1993) Effect of low and moderate doses of alcohol on driving hazard perception latency and driving speed. Addiction 88:527–532

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Eagle DM, Robbins TW (2006a) Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev 26:379–395

    Article  PubMed  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Cardinal RN, Robbins TW (2006b) Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice. Cereb Cortex 16:106–114

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out within the framework of the IMAGEN consortium. IMAGEN receives research funding from the European Community's Sixth Framework Programme (LSHM-CT-2007-037286). This paper reflects only the authors' views and the community is not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Stephens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, Y.P., Ripley, T.L. & Stephens, D.N. Ethanol effects on impulsivity in two mouse strains: similarities to diazepam and ketamine. Psychopharmacology 204, 679–692 (2009). https://doi.org/10.1007/s00213-009-1500-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1500-0

Keywords

Navigation