Skip to main content
Log in

Somatostatin coupling to adenylyl cyclase activity in the mouse retina

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The peptide somatostatin-14 (SRIF) acts in the mammalian retina through its distinct receptors (sst1–5). Scarce information is available on SRIF function in the retina, including the elucidation of transduction pathways mediating SRIF action. We have investigated SRIF and SRIF receptor modulation of adenylyl cyclase (AC) activity in both wild-type (WT) retinas and sst1 or sst2 knock-out (KO) retinas, which are known to over-express sst2 or sst1 receptors respectively. In WT retinas, application of SRIF compounds does not affect forskolin-stimulated AC activity. In contrast, activation of sst1 or sst2 receptors inhibits AC in the presence of sst2 or sst1 receptor antagonists respectively. Results from sst1 KO retinas demonstrate that either SRIF or the sst2 receptor preferring agonist octreotide, pertussis toxin-dependently inhibit AC activity. In contrast, in sst2 KO retinas, neither SRIF nor CH-275, an sst1 receptor agonist, are found to influence AC activity. As revealed by immunoblotting experiments, in sst1 KO retinas, levels of Goα proteins are 60% higher than in WT retinas and this increase in Goα protein levels is concomitant with an increase in sst2A receptor expression. We conclude that interactions between sst1 and sst2 receptors may prevent SRIF effects on AC activity. In addition, we suggest that the density of sst2 receptors and/or Goα proteins may represent the rate-limiting factor for the sst2 receptor-mediated inhibition of AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2
Fig. 3A–C
Fig. 4
Fig. 5A, B

Similar content being viewed by others

References

  • Aavik E, Luoto NM, Petrov L, Aavik S, Patel YC, Hayry P (2002) Elimination of vascular fibrointimal hyperplasia by somatostatin receptor 1,4-selective agonist. FASEB J 16:724–726

    CAS  PubMed  Google Scholar 

  • Bagnoli P, Dal Monte M, Casini G (2003) Expression of neuropeptides and their receptors in the developing retina of mammals. Histol Histopathol 18:1219–1242

    CAS  PubMed  Google Scholar 

  • Blake AD (2001) Somatostatin receptor subtype 1 (sst(1)) regulates intracellular 3′,5′-cyclic adenosine monophosphate accumulation in rat embryonic cortical neurons: evidence with L-797,591, an sst(1)-subtype-selective nonpeptidyl agonist. Neuropharmacology 40:590–596

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Casini G, Dal Monte M, Petrucci C, Gambellini G, Grouselle D, Allen JP, Kreienkamp H-J, Richter D, Epelbaum J, Bagnoli P (2004) Altered morphology of rod bipolar cell axonal terminals in the retinas of mice carrying genetic deletion of somatostatin subtype receptor 1 or 2. Eur J Neurosci 19:43–54

    PubMed  Google Scholar 

  • Castanon N, Scearce-Levie K, Lucas JJ, Rocha B, Hen R (2000) Modulation of the effects of cocaine by 5-HT1B receptors: a comparison of knockouts and antagonists. Pharmacol Biochem Behav 67:559–566

    Article  CAS  PubMed  Google Scholar 

  • Cervia D, Fiorini S, Pavan B, Biondi C, Bagnoli P (2002a) Somatostatin (SRIF) modulates distinct signaling pathways in rat pituitary tumor cells; negative coupling of SRIF receptor subtypes 1 and 2 to arachidonic acid release. Naunyn-Schmiedebergs Arch Pharmacol 365:200–209

    Article  CAS  PubMed  Google Scholar 

  • Cervia D, Petrucci C, Bluet-Pajot MT, Epelbaum J, Bagnoli P (2002b) Inhibitory control of growth hormone secretion by somatostatin in rat pituitary GC cells: sst(2) but not sst(1) receptors are coupled to inhibition of single-cell intracellular free calcium concentrations. Neuroendocrinology 76:99–110

    Article  CAS  PubMed  Google Scholar 

  • Cervia D, Nunn C, Fehlmann D, Langenegger D, Schuepbach E, Hoyer D (2003a) Pharmacological characterisation of native somatostatin receptors in AtT-20 mouse tumour corticotrophs. Br J Pharmacol 139:109–121

    Article  CAS  PubMed  Google Scholar 

  • Cervia D, Zizzari P, Pavan B, Schuepbach E, Langenegger D, Hoyer D, Biondi C, Epelbaum J, Bagnoli P (2003b) Biological activity of somatostatin receptors in GC rat tumour somatotrophs: evidence with sst1–sst5 receptor-selective nonpeptidyl agonists. Neuropharmacology 44:672–685

    Article  CAS  PubMed  Google Scholar 

  • Colas B, Valencia AM, Prieto JC, Arilla E (1992) Somatostatin binding and modulation of adenylate cyclase in ovine retina membranes. Mol Cell Endocrinol 88:111–117

    Article  CAS  PubMed  Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 132:107–124

    Article  CAS  PubMed  Google Scholar 

  • Cristiani R, Petrucci C, Dal Monte M, Bagnoli P (2002) Somatostatin (SRIF) and SRIF receptors in the mouse retina. Brain Res 936:1–14

    Article  CAS  PubMed  Google Scholar 

  • Dal Monte M, Petrucci C, Cozzi A, Allen JP, Bagnoli P (2003a) Somatostatin inhibits potassium-evoked glutamate release by activation of the sst(2) somatostatin receptor in the mouse retina. Naunyn-Schmiedebergs Arch Pharmacol 367:188–192

    PubMed  Google Scholar 

  • Dal Monte M, Petrucci C, Vasilaki A, Cervia D, Grouselle D, Epelbaum J, Kreienkamp HJ, Richter D, Hoyer D, Bagnoli P (2003b) Genetic deletion of somatostatin receptor 1 alters somatostatinergic transmission in the mouse retina. Neuropharmacology 45:1080–1092

    Article  PubMed  Google Scholar 

  • Defer N, Best-Belpomme M, Hanoune J (2000) Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am J Physiol Renal Physiol 279:F400–F416

    CAS  PubMed  Google Scholar 

  • Firth SI, Boelen MK, Morgan IG (1998) Enkephalin, neurotensin and somatostatin increase cAMP levels in the chicken retina. Aust NZ J Ophthalmol 26 [Suppl 1]:S65–S67

    Google Scholar 

  • Hoyer D, Dixon K, Gentsch C, Vassout A, Enz A, Jaton A, Nunn C, Schoeffter P, Neumann P, Troxler T, Pfaeffli P (2002) NVP-SRA880, a somatostatin sst1 receptor antagonist promotes social interactions, reduces aggressive behaviour and stimulates learning. Pharmacologist 44:A254

    Google Scholar 

  • Hummel M, Ansonoff MA, Pintar JE, Unterwald EM (2004) Genetic and pharmacological manipulation of mu opioid receptors in mice reveals a differential effect on behavioral sensitization to cocaine. Neuroscience 125:211–220

    Article  CAS  PubMed  Google Scholar 

  • Insel PA, Ostrom RS (2003) Forskolin as a tool for examining adenylyl cyclase expression, regulation, and G protein signaling. Cell Mol Neurobiol 23:305–314

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo-Claros RM, Boyano-Adanez MC, Torrecillas G, Rodriguez-Puyol M, Arilla-Ferreiro E (2001) Acute modulation of somatostatin receptor function by melatonin in the rat frontoparietal cortex. J Pineal Res 31:46–56

    Article  CAS  PubMed  Google Scholar 

  • Johnson J, Wu V, Wong H, Walsh JH, Brecha NC (1999) Somatostatin receptor subtype 2A expression in the rat retina. Neuroscience 94:675–683

    Article  CAS  PubMed  Google Scholar 

  • Johnson J, Caravelli ML, Brecha NC (2001) Somatostatin inhibits calcium influx into rat rod bipolar cell axonal terminals. Vis Neurosci 18:101–108

    Article  CAS  PubMed  Google Scholar 

  • Kreienkamp HJ, Akgun E, Baumeister H, Meyerhof W, Richter D (1999) Somatostatin receptor subtype 1 modulates basal inhibition of growth hormone release in somatotrophs. FEBS Lett 462:464–466

    Google Scholar 

  • Mastrodimou N, Thermos K (2004) The somatostatin receptor (sst1) modulates the release of somatostatin in rat retina. Neurosci Lett 356:13–16

    Article  CAS  PubMed  Google Scholar 

  • Moneta D, Richichi C, Aliprandi M, Dournaud P, Dutar P, Billard JM, Carlo AS, Viollet C, Hannon JP, Fehlmann D, Nunn C, Hoyer D, Epelbaum J, Vezzani A (2002) Somatostatin receptor subtypes 2 and 4 affect seizure susceptibility and hippocampal excitatory neurotransmission in mice. Eur J Neurosci 16:843–849

    Article  CAS  PubMed  Google Scholar 

  • Nunn C, Schoeffter P, Langenegger D, Hoyer D (2003) Functional characterisation of the putative somatostatin sst2 receptor antagonist CYN 154806. Naunyn-Schmiedebergs Arch Pharmacol 367:1–9

    CAS  PubMed  Google Scholar 

  • Ostrom RS, Post SR, Insel PA (2000) Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving G(s). J Pharmacol Exp Ther 294:407–412

    CAS  PubMed  Google Scholar 

  • Petrucci C, Resta V, Fieni F, Bigiani A, Bagnoli P (2001) Modulation of potassium current and calcium influx by somatostatin in rod bipolar cells isolated from the rabbit retina via sst2 receptors. Naunyn-Schmiedebergs Arch Pharmacol 363:680–694

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer M, Koch T, Schroder H, Klutzny M, Kirscht S, Kreienkamp HJ, Hollt V, Schulz S (2001) Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). J Biol Chem 276:14027–14036

    Article  CAS  PubMed  Google Scholar 

  • Pollock DM (2001) Contrasting pharmacological ETB receptor blockade with genetic ETB deficiency in renal responses to big ET-1. Physiol Genomics 6:39–43

    CAS  PubMed  Google Scholar 

  • Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, Patel YC (2000) Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem 275:7862–7869

    Article  CAS  PubMed  Google Scholar 

  • Schorderet M, Sovilla JY, Magistretti PJ (1981) VIP- and glucagon-induced formation of cyclic AMP in intact retinae in vitro. Eur J Pharmacol 71:131–133

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Schreff M, Schmidt H, Handel M, Przewlocki R, Hollt V (1998) Immunocytochemical localization of somatostatin receptor sst2A in the rat spinal cord and dorsal root ganglia. Eur J Neurosci 10:3700–3708

    Article  CAS  PubMed  Google Scholar 

  • Thermos K (2003) Functional mapping of somatostatin receptors in the retina: a review. Vision Res 43:1805–1815

    Article  CAS  PubMed  Google Scholar 

  • Vasilaki A, Gardette R, Epelbaum J, Thermos K (2001) NADPH-diaphorase colocalization with somatostatin receptor subtypes sst2A and sst2B in the retina. Invest Ophthalmol Vis Sci 42:1600–1609

    CAS  PubMed  Google Scholar 

  • Vasilaki A, Mouratidou M, Schulz S, Thermos K (2002) Somatostatin mediates nitric oxide production by activating sst(2) receptors in the rat retina. Neuropharmacology 43:899–909

    Article  CAS  PubMed  Google Scholar 

  • Vasilaki A, Georgoussi Z, Thermos K (2003) Somatostatin receptors (sst2) are coupled to Go and modulate GTPase activity in the rabbit retina. J Neurochem 84:625–632

    Article  CAS  PubMed  Google Scholar 

  • Watling KJ, Dowling JE (1983) Effects of vasoactive intestinal peptide and other peptides on cyclic AMP accumulation in intact pieces and isolated horizontal cells of the teleost retina. J Neurochem 41:1205–1213

    CAS  PubMed  Google Scholar 

  • Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C (2003) Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov 2:999–1017

    Article  CAS  PubMed  Google Scholar 

  • Zalutsky RA, Miller RF (1990) The physiology of somatostatin in the rabbit retina. J Neurosci 10:383–393

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank A. Gazzano for assistance with KO mouse colonies and G. Bresciani for animal care. We are grateful to D. Richter (University of Hamburg, Germany) and to J.P. Allen (Babraham Institute, Cambridge, UK) for providing us with the sst1 or sst2 KO mice respectively. We wish to thank D. Hoyer (Novartis Pharma, Basel, Switzerland) for providing us with octreotide, SRA880 and CYN. We are also grateful to G. Casini (University of Tuscia, Viterbo, Italy) for revising the manuscript. This work was supported by the Italian Board of Education (F06/FISR to PB and CB) and the European Community (QLG3-1999-00908 to PB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Cervia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavan, B., Fiorini, S., Dal Monte, M. et al. Somatostatin coupling to adenylyl cyclase activity in the mouse retina. Naunyn-Schmiedeberg's Arch Pharmacol 370, 91–98 (2004). https://doi.org/10.1007/s00210-004-0950-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0950-5

Keywords

Navigation