Skip to main content
Log in

Duality and interpolation of anisotropic Triebel–Lizorkin spaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study properties of anisotropic Triebel–Lizorkin spaces associated with general expansive dilations and doubling measures on \({\mathbb{R}}^n\) using wavelet transforms. This paper is a continuation of (Bownik in J Geom Anal 2007, to appear, Trans Am Math Soc 358:1469–1510, 2006), where we generalized the isotropic methods of dyadic \(\varphi\) -transforms of Frazier and Jawerth (J Funct Anal 93:34–170, 1990) to non-isotropic settings. By working at the level of sequence spaces, we identify the duals of anisotropic Triebel–Lizorkin spaces. We also obtain several real and complex interpolation results for these spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bergh J., Löfström J. (1976). Interpolation Spaces. Springer, Heidelberg

    MATH  Google Scholar 

  2. Besov O.V., Il’in V.P., Nikol’skiĭ S.M. (1979). Integral representations of functions and imbedding theorems. Vol. I and II. V. H. Winston & Sons, Washington

    Google Scholar 

  3. Bownik, M.: Anisotropic Hardy spaces and wavelets. Mem. Am. Math. Soc. 164(781), pp. 122 (2003)

    Google Scholar 

  4. Bownik M. (2005). Atomic and molecular decompositions of anisotropic Besov spaces. Math. Z. 250: 539–571

    Article  MATH  MathSciNet  Google Scholar 

  5. Bownik, M.: Anisotropic Triebel-Lizorkin spaces with doubling measures. J. Geom. Anal. (to appear) (2007)

  6. Bownik M., Ho K.-P. (2006). Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans. Am. Math. Soc. 358: 1469–1510

    Article  MATH  MathSciNet  Google Scholar 

  7. Bownik M., Speegle D. (2002). Meyer type wavelet bases in \({\mathbb{R}}^2\). J. Approx. Theory 116: 49–75

    Article  MATH  MathSciNet  Google Scholar 

  8. Bui H.-Q. (1982). Weighted Besov and Triebel spaces: interpolation by the real method. Hiroshima Math. J. 12: 581–605

    MATH  MathSciNet  Google Scholar 

  9. Bui H.-Q., Paluszyński M., Taibleson M.H. (1996). A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces. Studia Math. 119: 219–246

    MATH  MathSciNet  Google Scholar 

  10. Bui H.-Q., Paluszyński M., Taibleson M.H. (1997). Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The case \(q < 1\). J. Fourier Anal. Appl. 3: 837–846

    Article  MATH  MathSciNet  Google Scholar 

  11. Calderón A.P. (1964). Intermediate spaces and interpolation, the complex method. Studia Math. 24: 113–190

    MATH  MathSciNet  Google Scholar 

  12. Calderón A.P., Torchinsky A. (1975). Parabolic maximal function associated with a distribution. Adv. Math. 16: 1–64

    Article  MATH  Google Scholar 

  13. Calderón A.P., Torchinsky A. (1977). Parabolic maximal function associated with a distribution II. Adv. Math. 24: 101–171

    Article  MATH  Google Scholar 

  14. Coifman R.R., Weiss G. (1977). Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83: 569–645

    Article  MATH  MathSciNet  Google Scholar 

  15. Farkas W. (2000). Atomic and subatomic decompositions in anisotropic function spaces. Math. Nachr. 209: 83–113

    Article  MATH  MathSciNet  Google Scholar 

  16. Fefferman C., Stein E.M. (1971). Some maximal inequalities. Am. J. Math. 93: 107–115

    Article  MATH  MathSciNet  Google Scholar 

  17. Frazier M., Jawerth B. (1985). Decomposition of Besov spaces. Indiana U. Math. J. 34: 777–799

    Article  MATH  MathSciNet  Google Scholar 

  18. Frazier, M., Jawerth, B.: The \(\varphi\) -transform and applications to distribution spaces. Lecture Notes in Math., #1302. Springer, pp. 223–246 (1988)

  19. Frazier M., Jawerth B. (1990). A Discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93: 34–170

    Article  MATH  MathSciNet  Google Scholar 

  20. Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley theory and the study of function spaces. CBMS Regional Conference Ser., #79, American Math. Society (1991)

  21. García-Cuerva J., Rubiode Francia J.L. (1985). Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam

    MATH  Google Scholar 

  22. Gomez M., Milman M. (1989). Complex interpolation of H p spaces on product domains. Ann. Mat. Pura Appl. 155: 103–115

    Article  MATH  MathSciNet  Google Scholar 

  23. Grafakos, L.: Classical and modern fourier analysis. Pearson Education (2004)

  24. Gustavsson J., Peetre J. (1977). Interpolation of Orlicz spaces. Studia Math. 60: 33–59

    MATH  MathSciNet  Google Scholar 

  25. Han Y., Müller D., Yang D. (2006). Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr. 279: 1505–1537

    Article  MATH  MathSciNet  Google Scholar 

  26. Han, Y., Sawyer, E.: Littlewood–Paley theory on spaces of homogeneous type and classical function spaces. Mem. Am. Math. Soc. 110(530), (1994)

  27. Han, Y., Yang, D.: New characterizations and applications of inhomogeneous Besov and Triebel-Lizorkin spaces on homogeneous type spaces and fractals. Dissertations Math. 403, pp. 102 (2002)

  28. Han Y., Yang D. (2003). Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces. Studia Math. 156: 67–97

    MATH  MathSciNet  Google Scholar 

  29. Janson S., Jones P. (1982). Interpolation between H p spaces: the complex method. J. Funct. Anal. 48: 58–80

    Article  MATH  MathSciNet  Google Scholar 

  30. Kalton N. (1984). Convexity conditions for nonlocally convex lattices. Glasgow Math. J. 25: 141–152

    Article  MATH  MathSciNet  Google Scholar 

  31. Kalton N. (1986). Plurisubharmonic functions on quasi-Banach spaces. Studia Math. 84: 297–324

    MATH  MathSciNet  Google Scholar 

  32. Kalton N., Mitrea M. (1998). Stability results on interpolation scales of quasi-Banach spaces and applications. Trans. Am. Math. Soc. 350: 3903–3922

    Article  MATH  MathSciNet  Google Scholar 

  33. Mendez O., Mitrea M. (2000). The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations. J. Fourier Anal. Appl. 6: 503–531

    Article  MATH  MathSciNet  Google Scholar 

  34. Meyer Y. (1992). Wavelets and Operators. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  35. Nilsson P. (1985). Interpolation of Banach lattices. Studia Math. 82: 135–154

    MATH  MathSciNet  Google Scholar 

  36. Peetre J. (1971). Sur l’utilisation des suites inconditionellement sommables dans la théorie des espaces d’interpolation. Rend. Sem. Mat. Univ. Padova 46: 173–190

    MathSciNet  Google Scholar 

  37. Peetre J., Sparr G. (1972). Interpolation of normed abelian groups. Ann. Mat. Pura Appl. 92: 217–262

    Article  MATH  MathSciNet  Google Scholar 

  38. Pisier G. (1986). Factorization of operators through \(L^{p\infty}\) or L p1 and noncommutative generalizations. Math. Ann. 276: 105–136

    Article  MATH  MathSciNet  Google Scholar 

  39. Rychkov V.S. (2001). Littlewood-Paley theory and function spaces with \(A^{\rm loc}_p\) weights. Math. Nachr. 224: 145–180

    Article  MATH  MathSciNet  Google Scholar 

  40. Stein E.M. (1993). Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton

    MATH  Google Scholar 

  41. Schmeisser H.-J., Triebel H. (1987). Topics in Fourier Analysis and Function Spaces. Wiley, New York

    Google Scholar 

  42. Triebel H. (1981). Complex interpolation and Fourier multipliers for the spaces \(B^{s}_{p,q}\) and \(F^{s}_{p,q}\) of Besov-Hardy-Sobolev type: the case \(0 < p \leq \infty\) \(0 < q \leq \infty\). Math. Z. 176: 495–510

    Article  MathSciNet  Google Scholar 

  43. Triebel H. (1983). Theory of Function Spaces, Monographs in Math., #78. Birkhäuser, Basel

    Google Scholar 

  44. Triebel H. (1992). Theory of Function Spaces II, Monographs in Math., #84. Birkhäuser, Basel

    Google Scholar 

  45. Triebel, H.: Wavelet bases in anisotropic function spaces. Funct. Spaces Differ. Oper. Nonlinear Anal. pp. 370–387 (2004)

  46. Triebel H. (2006). Theory of Function Spaces III, Monographs in Math., #100. Birkhäuser, Basel

    Google Scholar 

  47. Verbitsky I. (1992). Weighted norm inequalities for maximal operators and Pisier’s theorem on factorization through \(L^{p\infty}\). Integr. Equ. Oper. Theory 15: 124–153

    Article  MATH  MathSciNet  Google Scholar 

  48. Verbitsky I. (1996). Imbedding and multiplier theorems for discrete Littlewood-Paley spaces. Pacific J. Math. 176: 529–556

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Bownik.

Additional information

The author was partially supported by the NSF grants DMS-0441817 and DMS-0653881. The author wishes to thank Michael Frazier and Dachun Yang for valuable comments and discussions on this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bownik, M. Duality and interpolation of anisotropic Triebel–Lizorkin spaces. Math. Z. 259, 131–169 (2008). https://doi.org/10.1007/s00209-007-0216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0216-2

Keywords

Mathematics Subject Classification (2000)

Navigation