Skip to main content
Log in

Smoothing Effects for Classical Solutions of the Full Landau Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this work, we consider the smoothness of the solutions to the full Landau equation. In particular, we prove that any classical solutions (such as the ones obtained by Guo in a “close to equilibrium” setting) become immediately smooth with respect to all variables. This shows that the Landau equation is a nonlinear and nonlocal analog of an hypoelliptic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre R., Villani C.: On the Boltzmann equation for long-range interactions. Comm. Pure Appl. Math. 55(1), 30–70 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alexandre R., Villani C.: On the Landau approximation in plasma physics. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(1), 61–95 (2004)

    MATH  MathSciNet  ADS  Google Scholar 

  3. Arsen’ev A.A., Buryak O.E.: On a connection between the solution of the Boltzmann equation and the solution of the Landau–Fokker–Planck equation. Math. USSR Sbornik 69(2), 465–478 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernis L., Desvillettes L.: Propagation of singularities for classical solutions of the Vlasov–Poisson–Boltzmann equation. Discret. Contin. Dyn. Syst. 24(1), 13–33 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bouchut F., Desvillettes L.: A proof of the smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoam 14(1), 47–61 (1998)

    MATH  MathSciNet  Google Scholar 

  6. Bouchut F., Desvillettes L.: Averaging lemmas without time Fourier transform and application to discretized kinetic equations. Proc. Roy. Soc. Edinburgh 129A(1), 19–36 (1999)

    MathSciNet  Google Scholar 

  7. Boudin L., Desvillettes L.: On the singularities of the global small solutions of the full Boltzmann equation. Monatschefte für Mathematik 131(2), 91–108 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chapman S., Cowling T.G.: The Mathematical Theory of Non–uniform Gases. Cambridge University Press, London (1970)

    Google Scholar 

  9. Chen Y.: Smoothness of classical solutions to the Vlasov–Poisson–Landau system. Kinet. Relat. Models 1(3), 369–386 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Chen Y.: Smoothness of classical solutions to the Vlasov–Maxwell–Landau system near Maxwellians. Discret. Contin. Dyn. Syst. 20(4), 889–910 (2008)

    Article  MATH  Google Scholar 

  11. Degond P., Lucquin-Desreux B.: The Fokker–Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Model Methods Appl. Sci. 2(2), 167–182 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Desvillettes L.: About the use of the Fourier transform for the Boltzmann Equation. Riv. Mat. Univ. Parma 7(2), 1–99 (2003) (special issue)

    MathSciNet  Google Scholar 

  13. Desvillettes L.: On asymptotics of the Boltzmann equation when the collisions become grazing. Transp. Theory Stat. Phys. 21(3), 259–276 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Desvillettes L., Golse F.: On a model Boltzmann equation without angular cutoff, Differ. Integral Equ. 13(4–6), 567–594 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Desvillettes L., Villani C.: On the spatially homogeneous Landau equation for hard potentials. Part 1. Existence, uniqueness and smoothness. Comm. Partial Differ. Equ. 25(1–2), 179–259 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Desvillettes L., Villani C.: On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems. Part I. The linear Fokker–Planck equation. Comm. Pure Appl. Math. 54(1), 1–42 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. DiPerna R., Lions P.L.: On the Cauchy problem for the Boltzmann equation: global existence and weak stability. Ann. Math. 130(2), 312–366 (1989)

    Article  MathSciNet  Google Scholar 

  18. DiPerna R., Lions P.L.: Global weak solutions of Vlasov–Maxwell systems. Comm. Pure Appl. Math. 42(6), 729–757 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Golse F., Lions P.L., Perthame B., Sentis R.: Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76(1), 110–125 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Guo Y.: The Landau equation in a periodic box. Comm. Math. Phys 231(3), 391–434 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. He L.: Regularities of the solutions to the Fokker–Planck–Boltzmann equation. J. Differ. Equ. 244(12), 3060–3079 (2008)

    Article  MATH  Google Scholar 

  22. Illner R., Shinbrot M.: Global existence for a rare gas in an infinite vacuum. Comm. Math. Phys. 95, 117–126 (1984)

    Article  MathSciNet  Google Scholar 

  23. Lifshitz E.M., Pitaevskii L.P.: Physical Kinetics. Pergamon Press, Oxford (1981)

    Google Scholar 

  24. Lions P.L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications, I, II. J. Math. Kyoto Univ. 34(2), 391–427, 429–461 (1994)

    Google Scholar 

  25. Lu X.: A direct method for the regularity of the gain term in the Boltzmann equation. J. Math. Anal. Appl. 228(2), 409–435 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mischler S., Perthame B.: Boltzmann equation with infinite energy: renormalized solutions and distributional solutions for small initial data and initial data close to a Maxwellian. SIAM J. Math. Anal. 28(5), 1015–1027 (1997)

    MATH  MathSciNet  Google Scholar 

  27. Villani C.: On the Cauchy problem for Landau equation: sequential stability, global existence. Adv. Differ. Equ. 1(5), 793–816 (1996)

    MATH  MathSciNet  Google Scholar 

  28. Wennberg B.: Regularity in the Boltzmann equation and the Radon transform. Comm. Partial Differ. Equ. 19(11–12), 2057–2074 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yemin Chen.

Additional information

Communicated by P.-L. Lions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Desvillettes, L. & He, L. Smoothing Effects for Classical Solutions of the Full Landau Equation. Arch Rational Mech Anal 193, 21–55 (2009). https://doi.org/10.1007/s00205-009-0223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0223-z

Keywords

Navigation