Skip to main content

Advertisement

Log in

Monitoring of deiodinase deficiency based on transcriptomic responses in SH-SY5Y cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Iodothyronine deiodinase types I, II, and III (D1, D2, and D3, respectively), which constitute a family of selenoenzymes, activate and inactivate thyroid hormones through the removal of specific iodine moieties from thyroxine and its derivatives. These enzymes are important in the biological effects mediated by thyroid hormones. The expression of activating and inactivating deiodinases plays a critical role in a number of cell systems, including the neuronal system, during development as well as in adult vertebrates. To investigate deiodinase-disrupting chemicals based on transcriptomic responses, we examined differences in gene expression profiles between T3-treated and deiodinase-knockdown SH-SY5Y cells using microarray analysis and quantitative real-time RT-PCR. A total of 1,558 genes, consisting of 755 upregulated and 803 downregulated genes, were differentially expressed between the T3-treated and deiodinase-knockdown cells. The expression levels of 10 of these genes (ID2, ID3, CCL2, TBX3, TGOLN2, C1orf71, ZNF676, GULP1, KLF9, and ITGB5) were altered by deiodinase-disrupting chemicals (2,3,7,8-tetrachlorodibenzo-p-dioxin, polychlorinated biphenyls, propylthiouracil, iodoacetic acid, methylmercury, β-estradiol, methimazole, 3-methylcholanthrene, aminotriazole, amiodarone, cadmium chloride, dimethoate, fenvalerate, octylmethoxycinnamate, iopanoic acid, methoxychlor, and 4-methylbenzylidene-camphor). These genes are potential biomarkers for detecting deiodinase deficiency and predicting their effects on thyroid hormone production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed RG (2011) Perinatal TCDD exposure alters developmental neuroendocrine system. Food Chem Toxicol 49:1276–1284

    Article  CAS  PubMed  Google Scholar 

  • Beyer AS, von Einem B, Schwanzar D, Keller IE, Hellrung A, Thal DR, Ingelsson M, Makarova A, Deng M, Chhabra ES, Pröpper C, Böckers TM, Hyman BT, von Arnim CA et al (2012) Engulfment adapter PTB domain containing 1 interacts with and affects processing of the amyloid-beta precursor protein. Neurobiol Aging 33:732–743

    Article  CAS  PubMed  Google Scholar 

  • Biederer CH, Ries SJ, Moser M, Florio M, Israel MA, McCormick F, Buettner R (2000) The basic helix-loop-helix transcription factors myogenin and Id2 mediate specific induction of caveolin-3 gene expression during embryonic development. J Biol Chem 275:26245–26251

    Article  CAS  PubMed  Google Scholar 

  • Boas M, Feldt-Rasmussen U, Skakkebaek NE, Main KM (2006) Environmental chemicals and thyroid function. Eur J Endocrinol 154:599–611

    Article  CAS  PubMed  Google Scholar 

  • Cardoso LC, Martins DC, Campos DV, Santos LM, Corrêa da Costa VM, Rosenthal D, Vaisman M, Violante AH, Carvalho DP (2002) Effect of iodine or iopanoic acid on thyroid Ca2+/NADPH-dependent H2O2-generating activity and thyroperoxidase in toxic diffuse goiters. Eur J Endocrinol 147:293–298

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia SS, Gupta P, Kar A, Maiti PK (1996) Free radical mediated membrane perturbation and inhibition of type-I iodothyronine 5′-monodeiodinase activity by lead and cadmium in rat liver homogenate. Biochem Mol Biol Int 39:765–770

    CAS  PubMed  Google Scholar 

  • Colantuoni A, Marchiafava PL, Lapi D, Forini FS, Iervasi G (2005) Effects of tetraiodothyronine and triiodothyronine on hamster cheek pouch microcirculation. Am J Physiol Heart Circ Physiol 288:1931–1936

    Article  Google Scholar 

  • Denslow ND, Garcia-Reyero N, Barber DS (2007) Fish ‘n’ chips: the use of microarrays for aquatic toxicology. Mol BioSyst 3:172–177

    Article  CAS  PubMed  Google Scholar 

  • Denver RJ, Williamson KE (2009) Identification of a thyroid hormone response element in the mouse Kruppel-like factor 9 gene to explain its postnatal expression in the brain. Endocrinology 150:3935–3943

    Article  CAS  PubMed  Google Scholar 

  • Dogan RN, Elhofy A, Karpus WJ (2008) Production of CCL2 by central nervous system cells regulates development of murine experimental autoimmune encephalomyelitis through the recruitment of TNF- and iNOS-expressing macrophages and myeloid dendritic cells. J Immunol 180:7376–7384

    CAS  PubMed  Google Scholar 

  • Forbes VE, Palmqvist A, Bach L (2006) The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem 25:272–280

    Article  CAS  PubMed  Google Scholar 

  • Galton VA, Wood ET, St Germain EA, Withrow CA, Aldrich G, St Germain GM, Clark AS, St Germain DL (2007) Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology 148:3080–3088

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Reyero N, Poynton HC, Kennedy AJ, Guan X, Escalon BL, Chang B, Varshavsky J, Loguinov AV, Vulpe CD, Perkins EJ (2009) Biomarker discovery and transcriptomic responses in Daphnia magna exposed to munitions constituents. Environ Sci Technol 43:4188–4193

    Article  CAS  PubMed  Google Scholar 

  • Gavaret JM, Cahnmann HJ, Nunez J (1981) Thyroid hormone synthesis in thyroglobulin. The mechanism of the coupling reaction. J Biol Chem 256:9167–9173

    CAS  PubMed  Google Scholar 

  • Ghosh N, Bhattacharya S (1992) Thyrotoxicity of the chlorides of cadmium and mercury in rabbit. Biomed Environ Sci 5:236–240

    CAS  PubMed  Google Scholar 

  • Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D (2006) Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 116:476–484

    Article  CAS  PubMed  Google Scholar 

  • Holzer R, Bockenkamp B, Booker P, Newland P, Ciotti G, Pozzi M (2004) The impact of cardiopulmonary bypass on selenium status, thyroid function, and oxidative defense in children. Pediatr Cardiol 25:522–528

    Article  CAS  PubMed  Google Scholar 

  • Howdeshell KL (2002) A model of the development of the brain as a construct of the thyroid system. Environ Health Perspect 110:337–348

    Article  CAS  PubMed  Google Scholar 

  • Jen Y, Manova K, Benezra R (1996) Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis. Dev Dyn 207:235–252

    Article  CAS  PubMed  Google Scholar 

  • Kallio P, Kolehmainen M, Laaksonen DE, Kekäläinen J, Salopuro T, Sivenius K, Pulkkinen L, Mykkänen HM, Niskanen L, Uusitupa M, Poutanen KS (2007) Dietary carbohydrate modification induces alterations in gene expression in abdominal subcutaneous adipose tissue in persons with the metabolic syndrome: the FUNGENUT Study. Am J Clin Nutr 85:1417–1427

    CAS  PubMed  Google Scholar 

  • Kawata K, Yokoo H, Shimazaki R, Okabe S (2007) Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol 41:3769–3774

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Jung KH, Noh JH, Eun JW, Bae HJ, Xie HJ, Jang JJ, Ryu JC, Park WS, Lee JY, Nam SW (2011) Identification of characteristic molecular signature for volatile organic compounds in peripheral blood of rat. Toxicol Appl Pharmacol 250:162–169

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhang X, Deng J, Hecker M, Al-Khedhairy A, Giesy JP, Zhou B (2011) Effects of prochloraz or propylthiouracil on the cross-talk between the HPG, HPA, and HPT axes in zebrafish. Environ Sci Technol 45:769–775

    Article  CAS  PubMed  Google Scholar 

  • Lowenstein PR, Morrison EE, Bain D, Shering AF, Banting G, Douglas P, Castro MG (1994) Polarized distribution of the trans-Golgi network marker TGN38 during the in vitro development of neocortical neurons: effects of nocodazole and brefeldin A. Eur J Neurosci 6:1453–1465

    Article  CAS  PubMed  Google Scholar 

  • Maiti PK, Kar A (1997) Dimethoate inhibits extrathyroidal 5′-monodeiodination of thyroxine to 3,3′,5-triiodothyronine in mice: the possible involvement of the lipid peroxidative process. Toxicol Lett 91:1–6

    Article  CAS  PubMed  Google Scholar 

  • Maiti PK, Kar A, Gupta P, Chaurasia SS (1995) Loss of membrane integrity and inhibition of type-I iodothyronine 5′-monodeiodinase activity by fenvalerate in female mouse. Biochem Biophys Res Commun 214:905–909

    Article  CAS  PubMed  Google Scholar 

  • Miller MD, Crofton KM, Rice DC, Zoeller RT (2009) Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes. Environ Health Perspect 117:1033–1041

    CAS  PubMed  Google Scholar 

  • Mol KA, Van Der Geyten S, Darras VM, Visser TJ, Kühn ER (1997) Characterization of iodothyronine outer ring and inner ring deiodinase activities in the blue tilapia, Oreochromis aureus. Endocrinology 138:1787–1793

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Yoshida K, Hoshikawa S, Ito S, Yoshida M, Satoh M, Watanabe C (2006) Effects of perinatal exposure to low doses of cadmium or methylmercury on thyroid hormone metabolism in metallothionein-deficient mouse neonates. Toxicology 228:77–84

    Article  CAS  PubMed  Google Scholar 

  • Morse DC, Groen D, Veerman M, van Amerongen CJ, Koëter HB, Smits van Prooije AE, Visser TJ, Koeman JH, Brouwer A (1993) Interference of polychlorinated biphenyls in hepatic and brain thyroid hormone metabolism in fetal and neonatal rats. Toxicol Appl Pharmacol 122:27–33

    Article  CAS  PubMed  Google Scholar 

  • Ohye H, Sugawara M (2010) Dual oxidase, hydrogen peroxide and thyroid diseases. Exp Biol Med 235:424–433

    Article  CAS  Google Scholar 

  • Renard CA, Labalette C, Armengol C, Cougot D, Wei Y, Cairo S, Pineau P, Neuveut C, de Reyniès A, Dejean A, Perret C, Buendia MA (2007) Tbx3 is a downstream target of the Wnt/beta-catenin pathway and a critical mediator of beta-catenin survival functions in liver cancer. Cancer Res 67:901–910

    Article  CAS  PubMed  Google Scholar 

  • Rosene ML, Wittmann G, Arrojo e Drigo R, Singru PS, Lechan RM, Bianco AC (2010) Inhibition of the type 2 iodothyronine deiodinase underlies the elevated plasma TSH associated with amiodarone treatment. Endocrinology 151:5961–5970

    Article  CAS  PubMed  Google Scholar 

  • Schmutzler C, Hamann I, Hofmann PJ, Kovacs G, Stemmler L, Mentrup B, Schomburg L, Ambrugger P, Grüters A, Seidlova-Wuttke D, Jarry H, Wuttke W, Köhrle J (2004) Endocrine active compounds affect thyrotropin and thyroid hormone levels in serum as well as endpoints of thyroid hormone action in liver, heart and kidney. Toxicology 205:95–102

    Article  CAS  PubMed  Google Scholar 

  • Schmutzler C, Bacinski A, Gotthardt I, Huhne K, Ambrugger P, Klammer H, Schlecht C, Hoang-Vu C, Grüters A, Wuttke W, Jarry H, Köhrle J (2007a) The ultraviolet filter benzophenone 2 interferes with the thyroid hormone axis in rats and is a potent in vitro inhibitor of human recombinant thyroid peroxidase. Endocrinology 148:2835–2844

    Article  CAS  PubMed  Google Scholar 

  • Schmutzler C, Gotthardt I, Hofmann PJ, Radovic B, Kovacs G, Stemmler L, Nobis I, Bacinski A, Mentrup B, Ambrugger P, Grüters A, Malendowicz LK, Christoffel J, Jarry H, Seidlovà-Wuttke D, Wuttke W, Köhrle J (2007b) Endocrine disruptors and the thyroid gland—a combined in vitro and in vivo analysis of potential new biomarkers. Environ Health Perspect 115:77–83

    Article  PubMed  Google Scholar 

  • Schneider MJ, Fiering SN, Thai B, Wu SY, St Germain E, Parlow AF, St Germain DL, Galton VA (2006) Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 147:580–589

    Article  CAS  PubMed  Google Scholar 

  • Simmen FA, Su Y, Xiao R, Zeng Z, Simmen RC (2008) The Krüppel-like factor 9 (KLF9) network in HEC-1-A endometrial carcinoma cells suggests the carcinogenic potential of dys-regulated KLF9 expression. Reprod Biol Endocrinol 6:41

    Article  PubMed  Google Scholar 

  • Soldin OP, O’Mara DM, Aschner M (2008) Thyroid hormones and methylmercury toxicity. Biol Trace Elem Res 126:1–12

    Article  CAS  PubMed  Google Scholar 

  • Song M, Kim YJ, Lee J, Ryu JC (2010) Genome-wide expression profiling of carbaryl and vinclozolin in human thyroid follicular carcinoma (FTC-238) cells. Biochip J 4:89–98

    Article  CAS  Google Scholar 

  • Song M, Kim YJ, Song MK, Choi HS, Park YK, Ryu JC (2011) Identification of classifiers for increase or decrease of thyroid peroxidase activity in the FTC-238/hTPO recombinant cell line. Environ Sci Technol 45:7906–7914

    Article  CAS  PubMed  Google Scholar 

  • Szabo DT, Richardson VM, Ross DG, Diliberto JJ, Kodavanti PR, Birnbaum LS (2009) Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups. Toxicol Sci 107:27–39

    Article  CAS  PubMed  Google Scholar 

  • Taurog A, Dorris ML, Guziec LJ, Guziec FS (1994) The selenium analog of methimazole. Measurement of its inhibitory effect on type I 5′-deiodinase and of its antithyroid activity. Biochem Pharmacol 48:1447–1453

    Article  CAS  PubMed  Google Scholar 

  • Tedelind S, Larsson F, Johanson C, van Beeren HC, Wiersinga WM, Nyström E, Nilsson M (2006) Amiodarone inhibits thyroidal iodide transport in vitro by a cyclic adenosine 5′-monophosphate- and iodine-independent mechanism. Endocrinology 147:2936–2943

    Article  CAS  PubMed  Google Scholar 

  • Thomas RS, Rank DR, Penn SG, Zastrow GM, Hayes KR, Pande K, Glover E, Silander T, Craven MW, Reddy JK, Jovanovich SB, Bradfield CA (2001) Identification of toxicologically predictive gene sets using cDNA microarrays. Mol Pharmacol 60:1189–1194

    CAS  PubMed  Google Scholar 

  • Woo S, Won H, Ryu JC, Yum S (2010) Differential gene expression profiling in iprobenfos-exposed marine medaka by heterologous microarray hybridization. Toxicol Environ Health Sci 2:18–24

    Article  Google Scholar 

  • Yim WC, Min K, Jung D, Lee BM, Kwon Y (2011) Cross experimental analysis of microarray gene expression data from volatile organic compounds treated targets. Mol Cell Toxicol 7:233–241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Korea Research Foundation Grants (to J. C. Ryu) from the Korean Ministry of the Environment as “The Eco-technopia 21 Project,” and KIST Program of the Republic of Korea.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chun Ryu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M., Song, MK., Choi, HS. et al. Monitoring of deiodinase deficiency based on transcriptomic responses in SH-SY5Y cells. Arch Toxicol 87, 1103–1113 (2013). https://doi.org/10.1007/s00204-013-1018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1018-4

Keywords

Navigation