Skip to main content
Log in

The Correction Capability of the Berlekamp–Massey–Sakata Algorithm with Majority Voting

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Sakata’s generalization of the Berlekamp–Massey algorithm applies to a broad class of codes defined by an evaluation map on an order domain. In order to decode up to the minimum distance bound, Sakata’s algorithm must be combined with the majority voting algorithm of Feng, Rao and Duursma. This combined algorithm can often decode far more than (d min −1)/2 errors, provided the errors are in general position. We give a precise characterization of the error correction capability of the combined algorithm. We also extend the concept behind Feng and Rao’s improved codes to decoding of errors in general position. The analysis leads to a new characterization of Arf numerical semigroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arf C. (1948). Une interprétation algébrique de la suite des ordres de multiplicité d’une branche algébrique. Proc Lond Math Soc 50(2):256–287

    MATH  MathSciNet  Google Scholar 

  2. Atiyah M.F., Macdonald I.G. (1969). Introduction to commutative algebra. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  3. Barucci V., Dobbs D.E., Fontana M. (1997). Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains. Mem Am Math Soc 125(598):x+78

    MathSciNet  Google Scholar 

  4. Bourbaki N. (1972). Commutative algebra. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  5. Bras-Amorós M. (2003). Improving evaluation codes. PhD Thesis, Universitat Politècnica de Catalunya, Barcelona

    Google Scholar 

  6. Bras-Amorós M. (2004). Acute semigroups, the order bound on the minimum distance, and the Feng–Rao improvements. IEEE Trans Inform Theory 50(6):1282–1289

    Article  MathSciNet  Google Scholar 

  7. Campillo A., Farrán J.I., Munuera C. (2000). On the parameters of algebraic–geometry codes related to Arf semigroups. IEEE Trans Inform Theory 46(7):2634–2638

    Article  MATH  MathSciNet  Google Scholar 

  8. Duursma I.M. (1993). Majority coset decoding. IEEE Trans Inform Theory 39(3):1067–1070

    Article  MATH  MathSciNet  Google Scholar 

  9. Feng G.L., Rao T.R.N. (1993). Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans Inform Theory 39(1):37–45

    Article  MATH  MathSciNet  Google Scholar 

  10. Feng G.-L., Rao T.R.N. (1995). Improved geometric Goppa codes. I. Basic theory. IEEE Trans Inform Theory 41(6, part 1):1678–1693 (Special issue on algebraic geometry codes)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garcia A., Stichtenoth H. (1996). On the asymptotic behaviour of some towers of function fields over finite fields. J Number Theory 61(2):248–273

    Article  MATH  MathSciNet  Google Scholar 

  12. Geil O., Høholdt T. (2000). Footprints or generalized Bezout’s theorem. IEEE Trans Inform Theory 46(2):635–641

    Article  MATH  MathSciNet  Google Scholar 

  13. Høholdt T., van Lint J.H., Pellikaan R. (1998). Algebraic geometry codes. North-Holland, Amsterdam, pp 871–961

    Google Scholar 

  14. Jensen H.E., Nielsen R.R., Høholdt T. (1999). Performance analysis of a decoding algorithm for algebraic-geometry codes. IEEE Trans Inform Theory 45(5):1712–1717

    Article  MATH  MathSciNet  Google Scholar 

  15. Lipman J. (1971). Stable ideals and Arf rings. Am J Math 93:649–685

    Article  MATH  MathSciNet  Google Scholar 

  16. O’Sullivan M.E. (1995). Decoding of codes defined by a single point on a curve. IEEE Trans Inform Theory 41(6, part 1):1709–1719 (Special issue on algebraic geometry codes)

    Article  MathSciNet  Google Scholar 

  17. O’Sullivan, M.E.: Decoding of Hermitian codes beyond (d min −1)/2. In: Proceedings of the 1997 IEEE international symposium on information theory, pp 384. Germany: Ulm 1997

  18. O’Sullivan M.E. (2001). New codes for the Berlekamp–Massey–Sakata algorithm. Finite Fields Appl 7(2):293–317

    Article  MathSciNet  Google Scholar 

  19. Pellikaan R. (1992). On decoding by error location and dependent sets of error positions. Discrete Math 106/107:369–381 (A collection of contributions in honour of Jack van Lint)

    Article  MathSciNet  Google Scholar 

  20. Pellikaan R., Stichtenoth H., Torres F. (1998). Weierstrass semigroups in an asymptotically good tower of function fields. Finite Fields Appl 4(4):381–392

    Article  MATH  MathSciNet  Google Scholar 

  21. Rosales J.C., García-Sánchez P.A., García-García J.I., Branco M.B. (2004). Arf numerical semigroups. J Algebra 276(1):3–12

    Article  MATH  MathSciNet  Google Scholar 

  22. Sakata S. (1990). Extension of the Berlekamp–Massey algorithm to N dimensions. Inform Comput 84(2):207–239

    Article  MATH  MathSciNet  Google Scholar 

  23. Stichtenoth H. (1988). A note on Hermitian codes over GF(q 2). IEEE Trans Inform Theory 34(5, part 2):1345–1348 (Coding techniques and coding theory)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. O’Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bras-Amorós, M., O’Sullivan, M.E. The Correction Capability of the Berlekamp–Massey–Sakata Algorithm with Majority Voting. AAECC 17, 315–335 (2006). https://doi.org/10.1007/s00200-006-0015-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-006-0015-8

Keywords

Navigation