Skip to main content

Advertisement

Log in

Effects of 3 years treatment with once-yearly zoledronic acid on the kinetics of bone matrix maturation in osteoporotic patients

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Once-yearly administration of intravenous zoledronic acid for 3 years in humans affects the kinetics of matrix filling in by mineral, independent of bone turnover.

Introduction

Yearly 5-mg infusions of zoledronic acid (ZOL) for 3 years have shown pronounced antifracture efficacy. The purpose of the present study was to test whether ZOL affects the kinetics of forming bone material properties maturation.

Methods

Iliac crest biopsies from the HORIZON-PFT clinical trial were analyzed by Raman microspectroscopy in actively bone-forming surfaces as a function of tissue age in trabecular and osteonal bone, to determine ZOL’s effect on bone material quality indices maturation kinetics.

Results

Mineral/matrix ratio increased in both groups as a function of tissue age, at both osteonal- and trabecular-forming surfaces; ZOL exhibiting the greatest increase in the trabecular surfaces only. The proteoglycan content showed a dependency on tissue age in both trabecular and osteonal surfaces, with ZOL exhibiting lower values in the tissue age 8–22 days in the trabecular surfaces. Mineral crystallinity (crystallite length and thickness) showed a dependence on tissue age, with ZOL exhibiting lower crystallite length compared with placebo only in the 8- to 22-day-old tissue at trabecular surfaces, while crystal thickness was lower in the 1- to 5-day-old tissue at both osteonal and trabecular surfaces.

Conclusions

The results of the present study suggest that once-yearly administration of intravenous ZOL for 3 years in humans does not exert any adverse effects on the evolution of bone material properties at actively forming osteonal and trabecular surfaces, while it may have a beneficial effect on the progression of the mineral-to-matrix ratio and mineral maturity bone quality indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38:617–627

    Article  PubMed  CAS  Google Scholar 

  2. Cai K, Frant M, Bossert J, Hildebrand G, Liefeith K, Jandt KD (2006) Surface functionalized titanium thin films: zeta-potential, protein adsorption and cell proliferation. Colloids Surf B Biointerfaces 50:1–8

    Article  PubMed  CAS  Google Scholar 

  3. Chen L, Mccrate JM, Lee JC, Li H (2011) The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22:105708

    Article  PubMed  Google Scholar 

  4. Nebe B, Finke B, Luthen F, Bergemann C, Schroder K, Rychly J, Liefeith K, Ohl A (2007) Improved initial osteoblast functions on amino-functionalized titanium surfaces. Biomol Eng 24:447–454

    Article  PubMed  CAS  Google Scholar 

  5. Shahryari A, Azari F, Vali H, Omanovic S (2009) The positive influence of electrochemical cyclic potentiodynamic passivation (cpp) of a ss316ls surface on its response to fibronectin and pre-osteoblasts. Phys Chem Chem Phys 11:6218–6224

    Article  PubMed  CAS  Google Scholar 

  6. Smeets R, Kolk A, Gerressen M, Driemel O, Maciejewski O, Hermanns-Sachweh B, Riediger D, Stein JM (2009) A new biphasic osteoinductive calcium composite material with a negative zeta potential for bone augmentation. Head Face Med 5:13

    Article  PubMed  Google Scholar 

  7. Smith IO, Baumann MJ, Mccabe LR (2004) Electrostatic interactions as a predictor for osteoblast attachment to biomaterials. J Biomed Mater Res A 70:436–441

    Article  PubMed  CAS  Google Scholar 

  8. Smith IO, Baumann MJ, Obadia L, Bouler JM (2004) Surface potential and osteoblast attraction to calcium phosphate compounds is affected by selected alkaline hydrolysis processing. J Mater Sci Mater Med 15:841–846

    Article  PubMed  CAS  Google Scholar 

  9. Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, Ozkan M, Ozkan CS (2008) Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices 10:321–328

    Article  PubMed  CAS  Google Scholar 

  10. Fratzl P, Gupta H, Paschalis E, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14:2115–2123

    Article  CAS  Google Scholar 

  11. Hofstetter B, Gamsjaeger S, Phipps R, Recker R, Ebetino F, Klaushofer K, Paschalis E (2012) Effects of alendronate and risedronate on bone material properties in actively forming trabecular bone surfaces. J Bone Miner Res 27:995–1003

    Article  PubMed  CAS  Google Scholar 

  12. Fuchs RK, Faillace ME, Allen MR, Phipps RJ, Miller LM, Burr DB (2011) Bisphosphonates do not alter the rate of secondary mineralization. Bone 49:701–705

    Article  PubMed  CAS  Google Scholar 

  13. Paschalis EP, Tatakis DN, Robins S, Fratzl P, Manjubala I, Zoehrer R, Gamsjaeger S, Buchinger B, Roschger A, Phipps R, Boskey AL, Dall’Ara E, Varga P, Zysset P, Klaushofer K, Roschger P (2011) Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone 49:1232–1241

    Article  PubMed  CAS  Google Scholar 

  14. Recker RR, Delmas PD, Halse J, Reid IR, Boonen S, Garcia-Hernandez PA, Supronik J, Lewiecki EM, Ochoa L, Miller P, Hu H, Mesenbrink P, Hartl F, Gasser J, Eriksen EF (2008) Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J Bone Miner Res 23:6–16

    Article  PubMed  CAS  Google Scholar 

  15. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822

    Article  PubMed  CAS  Google Scholar 

  16. Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2011) Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly zoledronic acid. J Bone Miner Res 26:12–18

    Article  PubMed  CAS  Google Scholar 

  17. Gamsjäger S, Kazanci M, Paschalis E, Fratzl P (2009) Raman spectroscopy for soft matter applications. In: Amer M (ed) Raman application in bone imaging. Wiley, Hoboken, pp 227–269

    Google Scholar 

  18. Juang C, Finzi L, Bustamante C (1988) Design and application of a computer-controlled confocal scanning differential polarization microscope. Rev Sci Instrum 59:2399–2408

    Article  Google Scholar 

  19. Lieber CA, Mahadevan-Jansen A (2003) Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc 57:1363–1367

    Article  PubMed  CAS  Google Scholar 

  20. Gamsjaeger S, Masic A, Roschger P, Kazanci M, Dunlop JW, Klaushofer K, Paschalis EP, Fratzl P (2010) Cortical bone composition and orientation as a function of animal and tissue age in mice by Raman spectroscopy. Bone 47:392–399

    Article  PubMed  Google Scholar 

  21. Quiles F, Balandier JY, Capizzi-Banas S (2006) In situ characterisation of a microorganism surface by Raman microspectroscopy: the shell of Ascaris eggs. Anal Bioanal Chem 386:249–255

    Article  PubMed  CAS  Google Scholar 

  22. Ellis R, Green E, Winlove CP (2009) Structural analysis of glycosaminoglycans and proteoglycans by means of Raman microspectrometry. Connect Tissue Res 50:29–36

    Article  PubMed  Google Scholar 

  23. Koljenovic S, Bakker Schut TC, Van Meerbeeck JP, Maat AP, Burgers SA, Zondervan PE, Kros JM, Puppels GJ (2004) Raman microspectroscopic mapping studies of human bronchial tissue. J Biomed Opt 9:1187–1197

    Article  PubMed  Google Scholar 

  24. Rieppo L, Rieppo J, Jurvelin JS, Saarakkala S (2012) Fourier transform infrared spectroscopic imaging and multivariate regression for prediction of proteoglycan content of articular cartilage. PLoS One 7:E32344

    Article  PubMed  CAS  Google Scholar 

  25. Kazanci M, Fratzl P, Klaushofer K, Paschalis EP (2006) Complementary information on in vitro conversion of amorphous (precursor) calcium phosphate to hydroxyapatite from Raman microspectroscopy and wide-angle X-ray scattering. Calcif Tissue Int 79:354–359

    Article  PubMed  CAS  Google Scholar 

  26. Bullough P (1992) Atlas of orthopaedic pathology. Gower, New York

    Google Scholar 

  27. Einhorn TA (1996) The bone organ system: form and function. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic, New York

    Google Scholar 

  28. Boskey AL, Coleman R (2010) Aging and bone. J Dent Res 89:1333–1348

    Article  PubMed  CAS  Google Scholar 

  29. Paschalis EP (2009) Fourier transform infrared analysis and bone. Osteoporos Int 20:1043–1047

    Article  PubMed  CAS  Google Scholar 

  30. Boskey AL, Pleshko N, Doty SB, Mendelsohn R (1992) Applications of Fourier transform infrared (FT-IR) microscopy to the study of mineralization in bone and cartilage. Cells And Materials 2:209–220

    Google Scholar 

  31. Donnelly E, Chen DX, Boskey AL, Baker SP, Van Der Meulen MC (2010) Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tissue Int 87:450–460

    Article  PubMed  CAS  Google Scholar 

  32. Ebetino F, Cornish J, Phipps R, Keck B, Reid I, Callon K (2010) Relative uptake of risedronate in trabecular and cortical bone. Bone 46:70

    Article  Google Scholar 

  33. Boskey AL, Spevak L, Doty SB, Rosenberg L (1997) Effects of bone CS-proteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in a gelatin gel. Calcif Tissue Int 61:298–305

    Article  PubMed  CAS  Google Scholar 

  34. Mochida Y, Duarte WR, Tanzawa H, Paschalis EP, Yamauchi M (2003) Decorin modulates matrix mineralization in vitro. Biochem Biophys Res Commun 305:6–9

    Article  PubMed  CAS  Google Scholar 

  35. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42:456–466

    Article  PubMed  CAS  Google Scholar 

  36. Grzesik WJ, Frazier CR, Shapiro JR, Sponseller PD, Robey PG, Fedarko NS (2002) Age-related changes in human bone proteoglycan structure. Impact of osteogenesis imperfecta. J Biol Chem 277:43638–43647

    Article  PubMed  CAS  Google Scholar 

  37. Boskey AL, Dicarlo E, Paschalis E, West P, Mendelsohn R (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16:2031–2038

    Article  PubMed  CAS  Google Scholar 

  38. Paschalis EP, Betts F, Dicarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int 61:487–492

    Article  PubMed  CAS  Google Scholar 

  39. Jager I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746

    Article  PubMed  CAS  Google Scholar 

  40. Farlay D, Panczer G, Rey C, Delmas PD, Boivin G (2010) Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab 28:433–445

    Article  PubMed  Google Scholar 

  41. Gadaleta SJ, Paschalis EP, Betts F, Mendelsohn R, Boskey AL (1996) Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif Tissue Int 58:9–16

    Article  PubMed  CAS  Google Scholar 

  42. Paschalis EP, Dicarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487

    PubMed  CAS  Google Scholar 

  43. Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3po4 domain. Calcif Tissue Int 49:383–388

    Article  PubMed  CAS  Google Scholar 

  44. Henneman ZJ, Nancollas GH, Ebetino FH, Russell RG, Phipps RJ (2008) Bisphosphonate binding affinity as assessed by inhibition of carbonated apatite dissolution in vitro. J Biomed Mater Res A 85:993–1000

    PubMed  Google Scholar 

  45. Fratzl P, Roschger P, Eschberger J, Abendroth B, Klaushofer K (1994) Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle X-ray-scattering study. J Bone Miner Res 9:1541–1549

    Article  PubMed  CAS  Google Scholar 

  46. Paschalis EP, Mendelsohn R, Boskey AL (2011) Infrared assessment of bone quality: a review. Clin Orthop Relat Res 469:2170–2178

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Novartis Pharma AG, Basel, Switzerland, for provision of the biopsy samples. This study was supported by the Allgemeine Unfallversicherungsanstalt (AUVA), research funds of the Austrian Workers' Compensation Board, the Wiener Gebietskrankenkasse (WGKK), Viennese Sickness Insurance Funds, and the Fonds zur Foederung der wissenschaftlichen Forschung (FWF project number P20646-B11).

Conflicts of interest

Dr. Recker consults for and/or receives research grants from Amgen, Eli Lilly, GlaxoSmithKline, Merck, Novartis, NPS Allelix, Procter & Gamble, Roche, and Sanofi-aventis. Dr. Eriksen consults and speaks for Novartis, Amgen, and Eli Lilly. Dr. Gasser is an employee of the Novartis Institute for BioMedical Research. Drs. Gamsjaeger, Hofstetter, Zwettler, Klaushofer, and Paschalis have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Paschalis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamsjaeger, S., Hofstetter, B., Zwettler, E. et al. Effects of 3 years treatment with once-yearly zoledronic acid on the kinetics of bone matrix maturation in osteoporotic patients. Osteoporos Int 24, 339–347 (2013). https://doi.org/10.1007/s00198-012-2202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2202-8

Keywords

Navigation