Skip to main content

Advertisement

Log in

Assessment of osteoclast number and function: application in the development of new and improved treatment modalities for bone diseases

  • Short Communication
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Numerous experimental and clinical observations suggest that overall changes in bone resorption during menopause or treatment with hormone replacement therapy (HRT) are combined effects of changes in osteoclast number and function. Moreover, due to a coupling between osteoclastic bone resorption and osteoblastic bone formation, pronounced alteration of osteoclast number will eventually lead to alteration of osteoblastic bone formation. Fragments of type I collagen, such as the C- and N-terminal telopeptides of collagen type I (CTX and NTX, respectively), are generated during bone resorption and hence can be used as surrogate markers of osteoclast function. Circulating levels of different enzymes in the serum, such as TRAP 5b and cathepsin K are proportional to the number of osteoclasts, and hence can be used as surrogate markers of osteoclast number. Since antiresorptive effects can be obtained in different ways, we felt it was timely to discuss the different scenarios, highlight differences specific to different pharmacological interventions with different mechanisms of action, and discuss how these bone markers can assist us in a deeper analysis of the pharmacodynamics and safety profile of existing and upcoming drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Baron R (2003) Anatomy and biology of bone matrix and cellular elements. Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, pp 1–8

    Google Scholar 

  2. Martin TJ (1993) Hormones in the coupling of bone resorption and formation. Osteoporos Int 3(Suppl 1):121–125

    Article  PubMed  Google Scholar 

  3. Vaananen HK, Harkonen PL (1996) Estrogen and bone metabolism. Maturitas 23 Suppl:S65–S69

    PubMed  CAS  Google Scholar 

  4. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    Article  PubMed  CAS  Google Scholar 

  5. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514

    Article  PubMed  CAS  Google Scholar 

  6. Garnero P, Sornay-Rendu E, Claustrat B et al (2000) Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 15:1526–1536

    Article  PubMed  CAS  Google Scholar 

  7. Ravn P, Hosking D, Thompson D et al (1999) Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort study. J Clin Endocrinol Metab 84:2363–2368

    Article  PubMed  CAS  Google Scholar 

  8. Ravn P, Clemmesen B, Christiansen C (1999) Biochemical markers can predict the response in bone mass during alendronate treatment in early postmenopausal women. Alendronate Osteoporosis Prevention Study Group. Bone 24:237–244

    Article  PubMed  CAS  Google Scholar 

  9. Holzer G, Noske H, Lang T (2005) Soluble cathepsin K: a novel marker for the prediction of nontraumatic fractures? J Lab Clin Med 146:13–17

    Article  PubMed  CAS  Google Scholar 

  10. Gertz BJ, Clemens JD, Holland SD et al (1998) Application of a new serum assay for type I collagen cross-linked N-telopeptides: assessment of diurnal changes in bone turnover with and without alendronate treatment. Calcif Tissue Int 63:102–106

    Article  PubMed  CAS  Google Scholar 

  11. Woitge HW, Pecherstorfer M, Li Y (1999) Novel serum markers of bone resorption: clinical assessment and comparison with established urinary indices. J Bone Miner Res 14:792–801

    Article  PubMed  CAS  Google Scholar 

  12. Christgau S, Bitsch-Jensen O, Hanover BN et al (2000) Serum crosslaps for monitoring the response in individuals undergoing antiresorptive therapy. Bone 26:505–511

    Article  PubMed  CAS  Google Scholar 

  13. Halleen JM, Alatalo SL, Suominen H et al (2000) Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 15:1337–1345

    Article  PubMed  CAS  Google Scholar 

  14. Kirstein B, Chambers TJ, Fuller K (2006) Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behavior. J Cell Biochem 98:1085–1094

    Article  PubMed  CAS  Google Scholar 

  15. Schaller S, Henriksen K, Sveigaard C et al (2004) The chloride channel inhibitor n53736 prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res 19:1144–1153

    Article  PubMed  CAS  Google Scholar 

  16. Karsdal MA, Henriksen K, Sorensen MG et al (2005) Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Am J Pathol 166:467–476

    PubMed  CAS  Google Scholar 

  17. Koh AJ, Demiralp B, Neiva KG et al (2005) Cells of the osteoclast lineage as mediators of the anabolic actions of parathyroid hormone in bone. Endocrinology 146:4584–4596

    Article  PubMed  CAS  Google Scholar 

  18. Martin TJ, Sims NA (2005) Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 11:76–81

    Article  PubMed  CAS  Google Scholar 

  19. Reszka AA, Rodan GA (2003) Mechanism of action of bisphosphonates. Curr Osteoporos Rep 1:45–52

    PubMed  Google Scholar 

  20. Nenonen A, Cheng S, Ivaska KK et al (2005) Serum TRACP 5b Is a useful marker for monitoring alendronate treatment: comparison with other markers of bone turnover. J Bone Miner Res 20:1804–1812

    Article  CAS  Google Scholar 

  21. McClung MR, Lewiecki EM, Cohen SB et al (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354:821–831

    Article  PubMed  CAS  Google Scholar 

  22. Hamdy NA (2006) Osteoprotegerin as a potential therapy for osteoporosis. Curr Rheumatol Rep 8:50–54

    PubMed  CAS  Google Scholar 

  23. Hannon RA, Clowes JA, Eagleton AC et al (2004) Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone 34:187–194

    Article  PubMed  CAS  Google Scholar 

  24. Tahtela R, Seppanen J, Laitinen K et al (2005) Serum tartrate-resistant acid phosphatase 5b in monitoring bisphosphonate treatment with clodronate: a comparison with urinary N-terminal telopeptide of type I collagen and serum type I procollagen amino-terminal propeptide. Osteoporos Int 16:1109–1116

    Article  PubMed  Google Scholar 

  25. Hansdottir H, Franzson L, Prestwood K et al (2004) The effect of raloxifene on markers of bone turnover in older women living in long-term care facilities. J Am Geriatr Soc 52:779–783

    Article  PubMed  Google Scholar 

  26. Hannon RA, Clack G, Gallager N et al (2005) The effect of AZ0530, a highly selective SRC inhibitor, on bone turnover in healthy males. European Calcified Tissue Society Conference 2005 [Abstract nb OC042]

  27. Capparelli C, Morony S, Warmington KS et al (2000) Pharmacologic Effects of a Single Treatment with Osteoprotegerin (OPG) on Bone Remodeling and Bone Density in Normal Rats. J Bone Miner Res 15 [Suppl 1], abstract 1132

    Google Scholar 

  28. Kostenuik P, Warmington KS, Grisanti M et al (2005) RANKL Inhibition with AMG 162, a Fully Human MAb, Causes Sustained Suppression of Bone Resorption and Increased BMD in Knockin Mice Expressing Humanized RANKL. J Bone Miner Res 20[Suppl 1], abstract SU304

  29. Karsdal MA, Hjorth P, Henriksen K et al (2003) Transforming growth factor-beta controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression. J Biol Chem 278:44975–44987

    Article  PubMed  CAS  Google Scholar 

  30. Henriksen K, Gram J, Schaller S et al (2004) Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing Autosomal Dominant Osteopetrosis type II (ADOII). Am J Pathol 164:1537–1545

    PubMed  CAS  Google Scholar 

  31. Bollerslev J, Marks SC Jr, Pockwinse S et al (1993) Ultrastructural investigations of bone resorptive cells in two types of autosomal dominant osteopetrosis. Bone 14:865–869

    Article  PubMed  CAS  Google Scholar 

  32. Alatalo SL, Ivaska KK, Waguespack SG et al (2004) Osteoclast-derived serum tartrate-resistant acid phosphatase 5b in Albers-Schonberg disease (type II autosomal dominant osteopetrosis). Clin Chem 50:883–890

    Article  PubMed  CAS  Google Scholar 

  33. Del Fattore A, Peruzzi B, Rucci N et al (2005) Clinical, genetic and cellular analysis of forty-nine osteopetrotic patients: implications for diagnosis and treatment. J Med Genet 43:315–325

    Article  PubMed  Google Scholar 

  34. Schlemmer A, Hassager C, Jensen SB et al (1992) Marked diurnal variation in urinary excretion of pyridinium cross-links in premenopausal women. J Clin Endocrinol Metab 74:476–480

    Article  PubMed  CAS  Google Scholar 

  35. Qvist P, Christgau S, Pedersen BJ et al (2002) Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 31:57–61

    Article  PubMed  CAS  Google Scholar 

  36. Hart SM, Eastell R (1999) Biochemical markers of bone turnover. Curr Opin Nephrol Hypertens 8:421–427

    Article  PubMed  CAS  Google Scholar 

  37. Simmons DJ, Menton DN, Russell JE et al (1988) Bone cell populations and histomorphometric correlates to function. Anat Rec 222:228–236

    Article  PubMed  CAS  Google Scholar 

  38. Halleen JM (2003) Tartrate-resistant acid phosphatase 5B is a specific and sensitive marker of bone resorption. Anticancer Res 23:1027–1029

    PubMed  CAS  Google Scholar 

  39. Ple PA, Green TP, Hennequin LF et al (2004) Discovery of a new class of anilinoquinazoline inhibitors with high affinity and specificity for the tyrosine kinase domain of c-Src. J Med Chem 47:871–887

    Article  PubMed  CAS  Google Scholar 

  40. Meier C, Meinhardt U, Greenfield JR et al (2006) Serum cathepsin K concentrations reflect osteoclastic activity in women with postmenopausal osteoporosis and patients with Paget’s disease. Clin Lab 52:1–10

    PubMed  CAS  Google Scholar 

  41. Ljusberg J, Wang Y, Lang P et al (2005) Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. J Biol Chem 280:28370–28381

    Article  PubMed  CAS  Google Scholar 

  42. Rissanen J, Suutari S, Ylonen S et al (2005) The Ratio of Osteoclast Activity/Osteoclast Number (CTX/TRACP 5b) Improves the Interpretation of the Effects of Anti-Resorptive Treatments in Human Osteclast Cultures. J Bone Miner Res 20[Suppl 1], abstract SU290

  43. Finkelstein JS, Hayes A, Hunzelman JL et al (2003) The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 349:1216–1226

    Article  PubMed  CAS  Google Scholar 

  44. Black DM, Greenspan SL, Ensrud KE et al (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215

    Article  PubMed  CAS  Google Scholar 

  45. Heaney RP (2003) Is the paradigm shifting? Bone 33:457–465

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Karsdal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henriksen, K., Tanko, L.B., Qvist, P. et al. Assessment of osteoclast number and function: application in the development of new and improved treatment modalities for bone diseases. Osteoporos Int 18, 681–685 (2007). https://doi.org/10.1007/s00198-006-0286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0286-8

Keywords

Navigation