Skip to main content
Log in

Composite fabrication using friction stir processing—a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Composite manufacturing is one of the most imperative advances in the history of materials. Nanoparticles have been attracting increasing attention in the composite community because of their capability of improving the mechanical and physical properties of traditional fiber-reinforced composites. Friction stir processing (FSP) has successfully evolved as an alternative technique of fabricating metal matrix composites. The FSP technology has recently shown a significant presence in generation of ex situ and in situ nanocomposites. This review article essentially describes the current status of the FSP technology in the field of composite fabrication with the main impetus on aluminum and magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zweben C (2002) Metal matrix composites, ceramic matrix composites, carbon matrix composites and thermally conductive polymers matrix composites. In: Harper CA (ed) Handbook of plastics, elastomers, and composites, 4th edn. McGraw Hill, New York, p 321

    Google Scholar 

  2. Mangalgiri PD (1999) Composite materials for aerospace applications. J Bull Mater Sci 22(3):657–664

    Article  Google Scholar 

  3. Lloyd DJ (1994) Int Mater Rev 39:1–23

    Article  Google Scholar 

  4. Tjong SC, Ma ZY (2000) Mater Sci Eng R 29:49–113

    Article  Google Scholar 

  5. Thomas WM, Nicholas ED, Needham JC, Church MG, Templesmith P, Dawes CJ (1991) The Welding Institute, TWI, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8

  6. Mishra RS, Mahoney MW, McFadden SX, Mara NA, Mukherjee AK (2000) Scr Mater 42:163–168

    Article  Google Scholar 

  7. Ma ZY, Mishra RS, Mahoney MW (2002) Acta Mater 50:4419–4430

    Article  Google Scholar 

  8. Kwon YJ, Shigematsu I, Saito N (2003) Scr Mater 49:785–789

    Article  Google Scholar 

  9. Rhodes CG, Mahoney MW, Bingel WH, Spurling RA, Bampton CC (1997) Scr Mater 36:69–75

    Article  Google Scholar 

  10. Chang CI, Lee CJ, Huang JC (2004) Scr Mater 51:509–514

    Article  Google Scholar 

  11. Su JQ, Nelson TW, Sterling CJ (2003) J Mater Res 18:1757–1760

    Article  Google Scholar 

  12. Saravanan RA, Surappa MK (2000) Mater Sci Eng, A 276:108–116

    Article  Google Scholar 

  13. Hu L, Wang E (2000) Mater Sci Eng, A 278:267–271

    Article  Google Scholar 

  14. Han BQ, Dunand DC (2000) Mater Sci Eng, A 277:297–304

    Article  Google Scholar 

  15. Lee DM, Suh BK, Kim BG, Lee JS, Lee CH (1997) Mater Sci Technol 13:590–595

    Article  Google Scholar 

  16. Mishra RS, Ma ZY (2005) Mater Sci Eng R 50:1–78

    Article  MATH  Google Scholar 

  17. Hsu CJ, Kao PW, Ho NJ (2005) Scr Mater 53:341–345

    Article  Google Scholar 

  18. Lee IS, Kao PW, Ho NJ (2008) Intermetallic 16:1104–1108

    Article  Google Scholar 

  19. Clyne TW, Withers PJ (1993) An introduction to metal matrix composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. El-Danaf EA, El-Rayes MM, Soliman SM (2010) Friction stir processing: an effective technique to refine grain structure and enhance ductility. Mater Des 31:1231–1236

    Article  Google Scholar 

  21. Wang W, Shi Q, Liu P, Li H, Li T (2009) A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. J Mater Process Technol 209:2099–2103

    Article  Google Scholar 

  22. Lim DK, Shibayanagi T, Gerlicha AP (2009) Synthesis of multi-walled CNT reinforced aluminum alloy composite via friction stir processing. Mater Sci Eng, A 507:194–199

    Article  Google Scholar 

  23. Ke L, Huang C, Xing Li, Huang K Al–Ni intermetallic composites produced in situ by friction stir processing. J. of Alloys and Compounds 503(2):494–499

  24. Dixit M, Newkirk WJ, Mishra RS (2007) Properties of friction stir-processed Al 1100–NiTi composite. Scr Mater 56:541–544

    Article  Google Scholar 

  25. Asadi P, Faraji G, Besharati MK (2010) Producing of AZ91/SiC composite by friction stir processing. Int J Adv Manuf Technol 51:247–260

    Article  Google Scholar 

  26. Mahmouda ERI, Takahashi M, Shibayanagi T, Ikeuchi K (2010) Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing. Wear 268:1111–1121

    Article  Google Scholar 

  27. Alidokht SA, Abdollah-zadeh A, Soleymani S, Assadi H (2011) Microstructure and tribological performance of an aluminum alloy based hybrid composite produced by friction stir processing. Mater Des 32:2727–2733

    Article  Google Scholar 

  28. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polymer Compos 25(6):630–645

    Article  Google Scholar 

  29. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  Google Scholar 

  30. Lau KT, Hui D (2002) The revolutionary creation of new advanced materials—carbon nano-tube composites. Compos Part B Eng 33(4):263–277

    Article  Google Scholar 

  31. Gojny FH, Wichmann MHG, Fiedler B, Bauhofer W, Schulte K (2005) Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos Part A Appl Sci Manuf 36(11):1525–1535

    Article  Google Scholar 

  32. Gou J, Braint SO, Gu H, Song G (2006) Damping augmentation of nanocomposites using carbon nanofiber paper. J Nanomater 2006:1–7

    Article  Google Scholar 

  33. Morisada Y, Fujii H, Nagaoka T, Fukusumim M (2006) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng, A 419:344–348

    Article  Google Scholar 

  34. Lee CJ, Huang JC, Hsieh PJ (2006) Mg based nano-composites fabricated by friction stir processing. Scr Mater 54:1415–1420

    Article  Google Scholar 

  35. Zarghani SA, Kashani-Bozorg SF, Zarei-Hanzaki A (2009) Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater Sci Eng, A 500:84–91

    Article  Google Scholar 

  36. Java KV, Sankaran KK, Rushau JJ (2000) Metall Mater Trans A 31A:2181–2188

    Google Scholar 

  37. Sato YS, Kokawa H (2001) Metall Mater Trans A 32A:3023–3031

    Article  Google Scholar 

  38. Yang M, Xu C, Wu C, Lin K, Chao Y, An L (2010) Fabrication of AA6061/Al2O3 nano ceramic particle reinforced composite coating by using friction stir processing. J Mater Sci 45(16):4431–4438

    Article  Google Scholar 

  39. Sharifitabar M, Sarani A, Khorshahian S, Shafiee Afarani M (2011) Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route. Mater Des 32:4164–4172

    Article  Google Scholar 

  40. Asadi P, Faraji G, Masoumi A, Besharati givi MK (2011) Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: effects of particle types and number of friction stir processing passes. Metall Mater Trans A. doi:10.1007/s11661-011-0698-8

  41. Mazaheri Y, Karimzadeh F, Enayati MH (2011) A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing. J Mater Process Technol. doi:10.1016/j.jmatprotec.2011.04.015

  42. Hsu CJ, Chang CY, Kao PW, Ho NJ, Chang CP (2006) Al–Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater 54:5241–5249

    Article  Google Scholar 

  43. Hsu CJ, Kao PW, Ho NJ (2005) Ultrafine-grained Al–Al2Cu composite produced in situ by friction stir processing. Scr Mater 53:341–345

    Article  Google Scholar 

  44. Zhang Q, Xiao BL, Wang QZ, Ma ZY (2011) In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al–TiO2 system. Mater Lett 65:2070–2072

    Article  Google Scholar 

  45. Bauri R, Yadav D, Suhas G (2011) Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite. Mater Sci Eng, A 528:4732–4739

    Article  Google Scholar 

  46. Barmouza M, Seyfib J, Givia MKB, Hejazic I, Davachi SM (2011) A novel approach for producing polymer nanocomposites by in-situ dispersion of clay particles via friction stir processing. Mater Sci Eng, A 528:3003–3006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Arora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, H.S., Singh, H. & Dhindaw, B.K. Composite fabrication using friction stir processing—a review. Int J Adv Manuf Technol 61, 1043–1055 (2012). https://doi.org/10.1007/s00170-011-3758-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-011-3758-8

Keywords

Navigation