Skip to main content
Log in

Hydrodynamic simulation of a n +nn + silicon nanowire

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Non-equilibrium electron transport in silicon nanowires has been tackled with a hydrodynamic model. This model has been formulated by taking the moments of the multisubband Boltzmann equation, coupled to the Schrödinger–Poisson system. Closure relations are obtained by means of the maximum entropy principle (MEP) of extended thermodynamics, including scattering of electrons with acoustic and nonpolar optical phonons. Simulation results for a quantum n +nn + silicon diode are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bindal A., Hamedi-Hagh S.: Static NMOS circuits for crossbar architectures using silicon nano-wire technology. Semicond. Sci. Technol. 22, 54–64 (2007)

    Article  ADS  Google Scholar 

  2. Agarwal A., Buddharaju K., Lao I.K., Singh N., Balasubramanian N., Kwong D.L.: Silicon nanowire sensor array using top-down CMOS technology. Sens. Actuators 145–146, 207–210 (2008)

    Article  Google Scholar 

  3. Maheswaran K.R.K., Karmalkar S.: Effect of the ambient field on the I-V characteristics of nanowires resistors and junctions—a simulation study. Physica E 44, 700–707 (2011)

    Article  ADS  Google Scholar 

  4. Wang, J., Lundstrom, M.: Does source-to-drain tunneling limit the ultimate scaling of MOSFETs?. IEDM Tech. Dig., 707–710 (2002)

  5. Ramayya E.B., Vasileska D., Goodnick S.M., Knezevic I.: Electron mobility in silicon nanowires. IEEE Trans. Nanotechnol. 6(1), 113–117 (2007)

    Article  ADS  Google Scholar 

  6. Lenzi M., Palestri P., Gnani E., Reggiani S., Gnudi A., Esseni D., Selmi L., Baccarani G.: Investigation of the transport properties of silicon nanowires using deterministic and Monte Carlo approaches to the solution of the Boltzmann transport equation. IEEE Trans. Electron Dev. 55(8), 2086–2096 (2008)

    Article  ADS  Google Scholar 

  7. Ramayya E.B., Knezevic I.: Self-consistent Poisson-Schrödinger-Monte Carlo solver: electron mobility in silicon nanowires. J. Comput. Electron. 8(3–4), 206–210 (2010)

    Google Scholar 

  8. Ossig G., Schürrer F.: Simulation of non-equilibrium electron transport in silicon quantum wires. J. Comput. Electron. 7, 367–370 (2008)

    Article  Google Scholar 

  9. Muscato O.: Monte Carlo evaluation of the transport coefficients in n +nn + silicon diode. COMPEL 19(3), 812–828 (2000)

    Article  MATH  Google Scholar 

  10. Muscato O., Wagner W.: Time step truncation in direct simulation Monte Carlo for semiconductors. COMPEL 24(4), 1351–1366 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Muscato O., Wagner W., Di Stefano V.: Numerical study of the systematic error in Monte Carlo schemes for semiconductors. ESAIM: M2AN 44(5), 1049–1068 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Muscato O., Wagner W., Di Stefano V.: Properties of the steady state distribution of electrons in semiconductors. Kinet. Relat. Models 4(3), 809–829 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Muscato O., Di Stefano V., Wagner W.: A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation. Comput. Math. Appl. 65(3), 520–527 (2013)

    Article  MathSciNet  Google Scholar 

  14. Muscato O., Di Stefano V.: Hydrodynamic modeling of silicon quantum wires. J. Comput. Electron. 11(1), 45–55 (2012)

    Article  MathSciNet  Google Scholar 

  15. Jou D., Casas-Vázquez J., Lebon G.: Extended Irreversible Thermodynamics. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  16. Müller I., Ruggeri T.: Rational Extended Irreversible Thermodynamics. Springer, Berlin (1998)

    Book  Google Scholar 

  17. Mascali G., Romano V.: Hydrodynamic subband model for semiconductors based on the maximum entropy principle. Il Nuovo Cimento C 33(1), 155 (2010)

    Google Scholar 

  18. Camiola V.D., Mascali G., Romano V.: Numerical simulation of a double-gate MOSFET with a subband model for semiconductors based on the maximum entropy principle. Continum Mech. Thermodyn. 24(4–6), 417–436 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Muscato O., Pidatella R.M., Fischetti M.V.: Monte Carlo and hydrodynamic simulation of a one dimensional n +nn + silicon diode. VLSI Des. 6(1–4), 247–250 (1998)

    Article  Google Scholar 

  20. Anile A., Muscato O., Romano V.: Moment equations with maximum entropy closure for carrier transport in semiconductor devices: validation in bulk silicon. VLSI Des. 10(4), 335–354 (2000)

    Google Scholar 

  21. Muscato O.: The Onsager Reciprocity Principle as a check of consistency for semiconductor carrier transport models. Physica A 289(3–4), 422–458 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Anile A.M., Mascali G.: Theoretical foundations for tail electron hydrodynamical models in semiconductors. Appl. Math. Lett. 14(2), 245–252 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mascali G., Romano V.: Si and GaAs mobility derived from a hydrodynamical model for semiconductors based on the maximum entropy principle. Physica A 352(2–4), 459–476 (2005)

    Article  ADS  Google Scholar 

  24. Mascali G., Romano V.: Simulation of Gunn oscillations with a non-parabolic hydrodynamical model based on the maximum entropy principle. COMPEL 24(1), 35–54 (2005)

    Article  MATH  Google Scholar 

  25. Muscato O., Di Stefano V.: Modeling heat generation in a sub-micrometric n +nn + silicon diode. J. Appl. Phys. 104(12), 124501 (2008)

    Article  ADS  Google Scholar 

  26. Muscato O., Di Stefano V.: Hydrodynamic modeling of the electro-thermal transport in silicon semiconductors. J. Phys. A Math. Theor. 44(10), 105501 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  27. Muscato O., Di Stefano V.: An energy transport model describing heat generation and conduction in silicon semiconductors. J. Stat. Phys. 144(1), 171–197 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Muscato O., Di Stefano V.: Heat generation and transport in nanoscale semiconductor devices via Monte Carlo and hydrodynamic simulations. COMPEL 30(2), 519–537 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Muscato O., Di Stefano V.: Local equilibrium and off-equilibrium thermoelectric effects in silicon semiconductors. J. Appl. Phys. 110(9), 093706 (2011)

    Article  ADS  Google Scholar 

  30. Di~Stefano V., Muscato O.: Seebeck effect in silicon semiconductors. Acta Appl. Math. 122(1), 225–238 (2012)

    MATH  MathSciNet  Google Scholar 

  31. Muscato O., Di Stefano V.: Electro-thermal behaviour of a sub-micron silicon diode. Semicond. Sci. Technol. 28(2), 025021 (2013)

    Article  ADS  Google Scholar 

  32. Ferry D.K., Goodnick S.M., Bird J.: Transport in Nanostructures. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  33. Ramayya E.B., Vasileska D., Goodnick S.M., Knezevic I.: Electron transport in silicon nanowires: the role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008)

    Article  ADS  Google Scholar 

  34. Jin S., Fischetti M.V., Tang T.-W.: Modeling of electron mobility in gated silicon nanowires at room temperature: Surface roughness scattering, dielectric screening, and band nonparabolicity. J. Appl. Phys. 102, 083715 (2007)

    Article  ADS  Google Scholar 

  35. Knezevic I., Ramayya E.B., Vasileska D., Goodnick S.M.: Diffusive transport in Quasi-2D and Quasi-1D electron systems. J. Comput. Theor. Nanosci. 6, 1725–1753 (2009)

    Article  Google Scholar 

  36. Shu, C.-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E. (eds.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, vol. 1697, p. 325 Springer, Berlin (1998)

  37. Muscato O., Romano V.: Simulation of submicron silicon diodes with a non-parabolic hydrodynamical model based on the maximum entropy principle. VLSI Des. 13(1–4), 273–279 (2001)

    Article  Google Scholar 

  38. Majorana A., Muscato O., Milazzo C.: Charge transport in 1D silicon devices via Monte Carlo simulation and Boltzmann-Poisson solver. COMPEL 23(2), 410–425 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Muscato.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muscato, O., Di Stefano, V. Hydrodynamic simulation of a n +nn + silicon nanowire. Continuum Mech. Thermodyn. 26, 197–205 (2014). https://doi.org/10.1007/s00161-013-0296-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-013-0296-7

Keywords

Navigation