Skip to main content
Log in

Discovery of intron polymorphisms in cultivated tomato using both tomato and Arabidopsis genomic information

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A low level of genetic variation has limited the application of molecular markers for characterizing important traits in cultivated tomato. To detect polymorphisms in tomato conserved ortholog sets (COS), expressed sequence tags (ESTs) were searched against tomato and Arabidopsis genomic sequences to define the positions of introns. Introns were amplified from 12 different accessions of tomato by polymerase chain reaction and nucleotide sequences were determined by sequencing. Results indicated that there was a possibility of 71% to amplify introns from tomato genomic DNA through this approach. A total of 201 introns were sequenced from 86 COS unigenes. The intron positions and numbers were conserved between tomato and Arabidopsis, but average intron length was three times longer in tomato than in Arabidopsis. A total of 307 single nucleotide polymorphisms (SNPs) and 75 indels were detected in introns of 57 COS unigenes among 12 tomato lines. Within cultivated tomato germplasm 172 SNPs and 47 indels were detected in introns of 33 COS unigenes. In addition, 41 SNPs were identified in the exons of 27 COS unigenes. The frequency of SNPs was 2.4 times higher in introns than in exons in the 22 COS unigenes having both intronic and exonic polymorphisms. These results indicate that intronic regions may contain sufficient variation to develop sufficient marker resources for genome-wide analysis in cultivated tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Archak S, Karihaloo JL, Jain A (2002) RAPD markers reveal narrowing genetic base of Indian tomato cultivars. Curr Sci 82:1139–1143

    Google Scholar 

  • Bernatzky R, Tanksley SD (1986) Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898

    CAS  PubMed  Google Scholar 

  • Bierne N, Lehnert SA, Bédier E, Bonhomme F, Moore SS (2000) Screening for intron-length polymorphism in penaeid shrimps using exon-primed intron-crossing (EPIC)-PCR. Mol Ecol 9:233–235

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Shen HL, Yang WC (2007) Development of tomato molecular markers. Mol Plant Breed 5(6S):130–138

    CAS  Google Scholar 

  • Chen J, Wang H, Shen HL, Chai M, Li JS, Qi MF, Yang WC (2009) Genetic variation in tomato populations from four breeding programs revealed by single nucleotide polymorphism and simple sequence repeat markers. Sci Hortic 122:6–16

    Article  CAS  Google Scholar 

  • Daguin C, Borsa P (1999) Genetic characterization of Mytilus galloprovincialis Lmk. in North West Africa using nuclear DNA markers. J Exp Mar Biol Ecol 235:55–65

    Article  CAS  Google Scholar 

  • Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics. doi:10.1155/2007/64358

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Martinez S, Andreani L, Garcia-Gusano M, Geuna F, Ruiz JJ (2005) Evolution of amplified length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome 49:648–656

    Article  Google Scholar 

  • Hassan M, Lemaire C, Fauvelot C, Bonhomme F (2003) Seventeen New EPIC-PCR amplifiable introns in fish. Mol Ecol 2:334–340

    Google Scholar 

  • Jiménez-Gómez JM, Maloof JN (2009) Sequence diversity in three tomato species: SNPs, markers, and molecular evolution. BMC Plant Biol 9:85

    Article  PubMed  Google Scholar 

  • Kabelka E, Franchino B, Francis DM (2002) Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92:504–510

    Article  CAS  PubMed  Google Scholar 

  • Labate JA, Baldo AM (2005) Tomato SNP discovery by EST mining and resequencing. Mol Breed 16:343–349

    Article  CAS  Google Scholar 

  • Labate JA, Robertson LD, Baldo AM (2009) Multilocus sequence data reveal extensive departures from equilibrium in domesticated tomato (Solanum lycopersicum L.). Heredity 103:257–267

    Article  CAS  PubMed  Google Scholar 

  • Lessa EP (1992) Rapid survey of DNA sequence variation in natural populations. Mol Biol Evol 9:323–330

    CAS  PubMed  Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    CAS  Google Scholar 

  • Mueller LA, Lankhorst RK, Tanksley SD et al (2009) A snapshot of the emerging tomato genome sequence. Plant Genome 2:78–92

    Article  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  Google Scholar 

  • Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379

    CAS  PubMed  Google Scholar 

  • Park YH, West MAL, St. Clair DA (2004) Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome 47:510–518

    Article  CAS  PubMed  Google Scholar 

  • Rick CM, Fobes JF (1974) Association of an allozyme with nematode resistance. Rpt Tomato Genet Coop 24:25

    Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Scott JW, Harbaugh BK (1989) Micro-Tom—a miniature dwarf tomato, Circular S-370, Florida Agricultural Experiment Station, pp 1–6

  • Scott JW, Francis DM, Miller SA, Somodi GC, Jones JB (2003) Tomato bacterial spot resistance derived from PI 114490; inheritance to race T2 and relationship across three pathogen races. J Am Soc Hortic Sci 128:698–703

    Google Scholar 

  • Sim SC, Robbins MD, Chilcott C, Zhu T, Francis DM (2009) Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L.) reveals patterns of SNP variation associated with breeding. BMC Genomics 10:466

    Article  PubMed  Google Scholar 

  • Tajima F (1993) Statistical analysis of DNA polymorphism. Jpn J Genet 68:567–595

    Article  CAS  PubMed  Google Scholar 

  • Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831

    Article  CAS  PubMed  Google Scholar 

  • Temesgen B, Brown GR, Harry DE, Kinlaw CS, Sewell MM, Neale DB (2001) Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.). Theor Appl Genet 102:664–675

    Article  CAS  Google Scholar 

  • Van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441–1456

    Article  PubMed  Google Scholar 

  • Van Deynze A, Stoffel K, Buell CR, Kozik A, Liu J, van der Knapp E, Francis D (2007) Diversity in conserved genes in tomato. BMC Genomics 8:465

    Article  PubMed  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in geneticalmodels without recombination. Theor Popul Biol 7:256–276

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Fu Y, Arora R (2005) Intron-flanking EST–PCR markers: from genetic marker development to gene structure analysis in Rhododendron. Theor Appl Genet 111:1347–1356

    Article  CAS  PubMed  Google Scholar 

  • Williams CE, St Clair DA (1993) Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36:619–630

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single copy, orthologous genes (COSII) for comparative, evolutionary and systematics studies: a test case in the Euasterid plant clade. Genetics 174:1407–1420

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Tsugane T, Watanabe M, Yano K, Maeda F, Kuwata C, Torki M, Ban Y, Nishimura S, Shibata D (2005) Expressed sequence tags from the laboratory-grown miniature tomato (Lycopersicon esculentum) cultivar Micro-Tom and mining for single nucleotide polymorphisms and insertions/deletions in tomato cultivars. Gene 356:127–134

    Article  PubMed  Google Scholar 

  • Yang W, Bai X, Kabelka E, Eaton C, Kamoun S, van der Knaap E, Francis D (2004) Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breed 14:21–34

    Article  CAS  Google Scholar 

  • Yang W, Miller SA, Scott JW, Jones JB, Francis DM (2005) Mining tomato genome sequence databases for molecular markers: application to bacterial resistance and marker assisted selection. Acta Hortic 695:241–250

    Google Scholar 

  • Yang L, Jin GL, Zhao XQ, Zheng Y, Xu ZH, Wu WR (2007) PIP: a database of potential intron polymorphism markers. Bioinformatics 23:2174–2177

    Article  CAS  PubMed  Google Scholar 

  • Yuan DJ, Chen J, Shen HL, Yang WC (2008) Genetics of flesh color and nucleotide sequence analysis of phytoene synthase gene 1 in a yellow-fruited tomato accession PI114490. Sci Hortic 118:20–24

    Article  CAS  Google Scholar 

  • Zhao XQ, Wu WR (2008) Construction of a genetic map based on ILP markers in rice. Hereditas (Beijing) 30(2):225–230

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Tomato Genetic Resource Center at the University of California Davis (California, USA) for providing seeds of some tomato lines. We also thank Dr. David B. Weaver from Auburn University for his critical review on the manuscript. The work was supported by National Natural Science Foundation of China (30671425) and the Program for New Century Excellent Talents in University (NCET-08-0531).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencai Yang.

Additional information

Communicated by T. Close.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 355 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Chen, J., Francis, D.M. et al. Discovery of intron polymorphisms in cultivated tomato using both tomato and Arabidopsis genomic information. Theor Appl Genet 121, 1199–1207 (2010). https://doi.org/10.1007/s00122-010-1381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1381-y

Keywords

Navigation