Skip to main content
Log in

Quantitative trait loci associated with seed and seedling traits in Lactuca

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Seed and seedling traits related to germination and stand establishment are important in the production of cultivated lettuce (Lactuca sativa L.). Six seed and seedling traits segregating in a L. sativa cv. Salinas x L. serriola recombinant inbred line population consisting of 103 F8 families revealed a total of 17 significant quantitative trait loci (QTL) resulting from three seed production environments. Significant QTL were identified for germination in darkness, germination at 25 and 35°C, median maximum temperature of germination, hypocotyl length at 72 h post-imbibition, and plant (seedling) quality. Some QTL for germination and early seedling growth characteristics were co-located, suggestive of pleiotropic loci regulating these traits. A single QTL (Htg6.1) described 25 and 23% of the total phenotypic variation for high temperature germination in California- and Netherlands-grown populations, respectively, and was significant between 33 and 37°C. Additionally, Htg6.1 showed significant epistatic interactions with other Htg QTL and a consistent effect across all the three seed production environments. L. serriola alleles increased germination at these QTL. The estimate of narrow-sense heritability (h2) of Htg6.1 was 0.84, indicating potential for L. serriola as a source of germination thermotolerance for lettuce introgression programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso-Blanco C, Bentsink L, Hanhart CJ, Blankestijn-de Vries H, Koornneef M (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164:711–729

    PubMed  CAS  Google Scholar 

  • Anderson JA, Sorrells ME, Tanksley SD (1993) RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat. Crop Sci 33:453–459

    Article  CAS  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (2001) QTL Cartographer. Dept of Statistics, North Carolina State University, Raleigh, NC

  • Bert PF, Jouan I, Tourvielle de Labrouche D, Serre F, Philippon J, Nicolas P, Vear F (2003) Comparative genetic analysis of quantitative traits in sunflower (Helianthus annus L.). 2. Characterization of QTL involved in developmental and agronomic traits. Theor Appl Genet 107:181–189

    PubMed  CAS  Google Scholar 

  • Bernardo R (2002) Breeding for quantitative traits in plants. Stemma Press, Woodbury, Minnesota

    Google Scholar 

  • Bettey M, Finch-Savage WE, King GJ, Lynn JR (2000) Quantitative genetic analysis of seed vigour and pre-emergence seedling growth traits in Brassica oleracea. New Phytol 148:277–286

    Article  Google Scholar 

  • Botto JF, Sanchez RA, Whitelam GC, Casal JJ (1996) Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade in Arabidopsis. Plant Physiol 110:439–444

    PubMed  CAS  Google Scholar 

  • Cantliffe DJ, Sung Y, Nascimento WM (2000) Lettuce seed germination. Hortic Rev 24:229–275

    CAS  Google Scholar 

  • Cantliffe DJ, Schuler KD, Guedes AC (1981) Overcoming seed thermodormancy in a heat-sensitive romaine lettuce by seed priming. HortScience 16:196–198

    CAS  Google Scholar 

  • Clerkx EJM, El-Lithy ME, Vierling E, Gerda RJ, Blankestijn-De Veries H, Groot SPC, Vreugdenhil D, Koornneef M (2004) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol 135:432–443

    Article  PubMed  CAS  Google Scholar 

  • Csanadi G, Vollmann J, Stift G, Lelley T (2001) Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet 103:912–919

    Article  CAS  Google Scholar 

  • Cui KH, Peng SB, Xing YZ, Xu CG, Yu SB, Zhang Q (2002) Molecular dissection of seedling vigor and associated physiological traits in rice. Theor Appl Genet 105:745–753

    Article  PubMed  CAS  Google Scholar 

  • Doganlar S, Frary A, Tanksley SD (2000) The genetic basis of seed weight variation: tomato as a model. Theor Appl Genet 100:1267–1273

    Article  CAS  Google Scholar 

  • Fennimore SA, Nyquist WE, Shaner GE, Doerge RW, Foley ME (1999) A genetic model and molecular markers for wild oat (Avena fatua L.) seed dormancy. Theor Appl Genet 99:711–718

    Article  CAS  Google Scholar 

  • Fielding A, Kristie DN, Dearman P (1992) The temperature of Pfr action governs the upper temperature limit for germination in lettuce. Photochem Photobiol 56:623–627

    Article  CAS  Google Scholar 

  • Foley ME (2002) Weeds, seeds, and buds-opportunities and systems for dormancy investigations. Weed Sci 50:267–272

    Article  CAS  Google Scholar 

  • Foolad MR, Lin GY, Chen FQ (1999) Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breeding 118:167–173

    Article  Google Scholar 

  • Gale MD, Flintham JE, Devos KM (2002) Cereal comparative genetics and preharvest sprouting. Euphytica 126:21–25

    Article  CAS  Google Scholar 

  • Gandhi S, Heesacker A, Freeman C, Argyris J, Bradford KJ, Knapp SJ (2005) The self-incompatibility locus (S) and quantitative trait loci for self-pollination and seed dormancy in sunflower. Theor Appl Genet 111:619–629

    Article  PubMed  CAS  Google Scholar 

  • Gonai T, Kawahara S, Tougou M, Satoh S, Hashiba T, Hirai N, Kawaide H, Kamiya Y, Yoshioka T (2004) Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. J Exp Bot 55:111–118

    Article  PubMed  CAS  Google Scholar 

  • Gray D (1975) Effects of temperature on the germination and emergence of lettuce (Lactuca sativa L.) varieties. Hortic Sci 50:349–361

    Google Scholar 

  • Guzman VL, Nagata RT, Datnoff LE, Raid RN (1992) ‘Florida 202’ and ‘Everglades’: New butterhead lettuce cultivars adapted to Florida. HortScience 27:852–853

    Google Scholar 

  • Johnson WC, Jackson LE, Ochoa O, van Wijk R, Peleman J, St. Claire DA, Michelmore RW (2000) Lettuce, a shallow-rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theor Appl Genet 101:1066–1073

    Article  CAS  Google Scholar 

  • Kato K, Nakamura W, Tabiki T, Miura H (2001) Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theor Appl Genet 102:980–985

    Article  CAS  Google Scholar 

  • Kesseli RV, Paran I, Michelmore RW (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics 136:1435–1446

    PubMed  CAS  Google Scholar 

  • Marks MK, Prince SD (1982) Seed physiology and seasonal emergence of wild lettuce Lactuca serriola. Oikos 38:242–249

    Article  Google Scholar 

  • Nascimento WM, Cantliffe DJ, Huber DJ (2000) Thermotolerance in lettuce seeds: association with ethylene and endo-beta-mannanase. J American Soc Hort Sci 125:518–524

    CAS  Google Scholar 

  • Redoña ED, Mackill DJ (1998) Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet 96: 957–963

    Article  Google Scholar 

  • Reynolds T (1973) A temperature-dependent source of variability in estimates of germination behaviour of lettuce fruits. Planta 113:327–332

    Article  Google Scholar 

  • Roth-Bejerano N, Sedee NJA, van der Meulen RM, Wang M (1999) The role of abscisic acid in germination of light-sensitive and light-insensitive lettuce seeds. Seed Sci Res 9:129–134

    CAS  Google Scholar 

  • Sako Y, McDonald MB, Fujimura K, Evans AF, and Bennett MA (2001) A system for automated seed vigour assessment. Seed Sci & Technol 29:625–636

    Google Scholar 

  • Small JGC, Gutterman Y (1992) A comparison on thermo- and skotodormancy in seeds of Lactuca serriola in terms of induction, alleviation, respiration, ethylene and protein synthesis. Plant Growth Regul 11:301–310

    Article  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Sung Y, Cantliffe DJ, Nagata RT (1998) Seed developmental temperature regulation of thermotolerance in lettuce. J Amer Soc Hort Sci 123:700–705

    Google Scholar 

  • Thompson PA, Cox AS, Sanderson RH (1979) Characterization of the germination responses to temperature of lettuce (Lactuca sativa L.) achenes. Ann Bot 43:319–334

    Google Scholar 

  • Toyomasu T, Kawaide H, Mitsuhashi W, Inoue Y, Kamiya Y (1998) Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Physiol 118:1517–1523

    Article  PubMed  CAS  Google Scholar 

  • Valdes VM, Bradford KJ, Mayberry KS (1985) Alleviation of thermodormancy in coated lettuce seeds by seed priming. HortScience 20:1112–1114

    Google Scholar 

  • Van der Schaar W, Alonso Blanco C, Leon-Kloosterziel KM, Jansen RC, Van Ooijen JW, Koornneef M (1997) QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity 79:190–200

    Article  PubMed  Google Scholar 

  • Weaver SE, Downs MP (2003) The biology of Canadian weeds. 122. Lactuca serriola L. Can J Plant Sci 83:619–628

    Google Scholar 

  • Yoshioka T, Endo T, Satoh S (1998) Restoration of seed germination at supraoptimal temperatures by fluridone, an inhibitor of abscisic acid biosynthesis. Plant Cell Physiol 39:307–312

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Department of Agriculture Initiative for Future Agriculture and Food Systems grant No. 00–52100–9609 and by National Science Foundation grant DBI-0421630.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent J. Bradford.

Additional information

Communicated by I. Paran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyris, J., Truco, M.J., Ochoa, O. et al. Quantitative trait loci associated with seed and seedling traits in Lactuca . Theor Appl Genet 111, 1365–1376 (2005). https://doi.org/10.1007/s00122-005-0066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0066-4

Keywords

Navigation