Skip to main content
Log in

Diffusionsgewichtete MRT der Prostata

Diffusion-weighted MRI of the prostate

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die diffusionsgewichtete MRT („diffusion-weighted imaging“, DWI) kann die MRT der Prostata bei der Erkennung und Lokalisation von Prostatakarzinomen besonders nach vorangehender, negativer Stanzbiopsie ergänzen. In 13 klinischen Original- und 2 Übersichtsarbeiten des Jahres 2010 zeigt sich, dass die DWI Prostatakarzinome an Einschränkungen der freien Teilchenbeweglichkeit bei erhöhter Zelldichte qualitativ im Bild oder quantitativ an Hand des „apparent diffusion coefficient“ (ADC) nachweist. Den ADC in der Prostata beeinflussen Stärke der Diffusionsgewichtung, Lokalisation (periphere Zone, Transitionalzone), Vorliegen von Prostatitis oder Einblutung sowie Streudichte und Differenzierung von Prostatakarzinomzellen. Unterschiede zwischen gesundem Prostatagewebe in der peripheren Zone und Prostatakarzinom sind für den ADC im Mittel offenbar geringer als für das (Cholin + Kreatin)/Zitrat-Verhältnis bei der MR-Spektroskopie. Die Testgüteparameter liegen etwas besser für MRT mit DWI als für MRT der Prostata allein, zeigen aber deutliche Unterschiede zwischen verschiedenen Studien. Die klinische Bewertung der DWI der Prostata erfordert verfahrenstechnische Vereinheitlichungen und Studien mit hohen Patientenzahlen.

Abstract

Diffusion-weighted magnetic resonance imaging (DWI) can complement MRI of the prostate in the detection and localization of prostate cancer, particularly after previous negative biopsy. A total of 13 original reports and 2 reviews published in 2010 demonstrate that prostate cancer can be detected by DWI due to its increased cell density and decreased diffusiveness, either qualitatively in DWI images or quantitatively by means of the apparent diffusion coefficient (ADC). In the prostate, the ADC is influenced by the strength of diffusion weighting, localization (peripheral or transitional zone), presence of prostatitis or hemorrhage and density and differentiation of prostate cancer cells. Mean differences between healthy tissue of the peripheral zone and prostate cancer appear to be smaller for ADC than for the (choline + creatine)/citrate ratio in MR spectroscopy. Test quality parameters vary greatly between different studies but appear to be slightly better for combined MRI and DWI than for MRI of the prostate alone. Clinical validation of DWI of the prostate requires both increased technical conformity and increased numbers of patients in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. American Joint Committee on Cancer (AJCC) (2002) Cancer staging manual. 6. Aufl. Springer, Berlin Heidelberg New York

  2. Gesundheitsberichterstattung des Bundes, Robert Koch-Institut in Zusammenarbeit mit dem Statistischen Bundesamt (2007) Prostataerkrankungen. Heft 36, Robert Koch-Institut, Berlin ISBN 978-3-89606-177-5, ISSN 1437–5478

  3. Groenendaal G, van den Berg CAT, Korporaal JG et al (2010) Simultaneous MRI diffusion and perfusion imaging for tumor delineation in prostate cancer patients. Radiother Oncol 95:185–190

    Article  PubMed  Google Scholar 

  4. Gürses B, Tasdelen N, Yencilek F et al (2010) Diagnostic utility of DTI in prostate cancer. Eur J Radiol doi:10.1016/j.ejrad.2010.01.009

    Google Scholar 

  5. Heuck A, Scheidler J, Sommer B et al (2003) MR-Tomographie des Prostatakarzinoms. Radiologe 43:464–473

    Article  PubMed  CAS  Google Scholar 

  6. Katahira K, Takahara T, Kwee TC et al (2010) Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol. DOI 10.1007/s00330-010-1883-7; published online 18-July-2010

  7. Kim CK, Park BK, Kim B (2010) High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2. AJR 194:W33–W37. DOI 10.2214/AJR.09.3004

    Article  PubMed  Google Scholar 

  8. Kozlowski P, Chang SD, Mengd R et al (2010) Combined prostate diffusion tensor imaging and dynamic contrast enhanced MRI at 3T – quantitative correlation with biopsy. Magn Reson Imaging 28:621–628

    Article  PubMed  Google Scholar 

  9. Kurhanewicz J, Vigneron DB, Hricak H et al (1996) Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology 198:795–805

    PubMed  CAS  Google Scholar 

  10. Langer DL, van der Kwast TH, Evans AJ et al (2008) Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2-sparse versus dense cancers. Radiology 249:900–908

    Article  PubMed  Google Scholar 

  11. Langer DL, van der Kwast TH, Evans AJ et al (2010) Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, ktrans, ve, and corresponding histologic features. Radiology 255:485-494

    Article  PubMed  Google Scholar 

  12. Müller-Lisse UL, Hofstetter A (2003) Urologische Diagnostik des Prostatakarzinoms. Radiologe 43:432–440

    Article  PubMed  Google Scholar 

  13. Mueller-Lisse UG, Miller K (2010) Bildgebende Verfahren bei Primärdiagnose und Staging des Prostatakarzinoms. Urologe A-49:190–198

    Google Scholar 

  14. Mueller-Lisse UG, Scherr M (2003) 1H-MR-Spektroskopie der Prostata: Ein Überblick. Radiologe 43:481–488

    Article  PubMed  CAS  Google Scholar 

  15. Mueller-Lisse UG, Scherr MK (2009) Klinische Magnetresonanzuntersuchungen der Prostata. In: Roth SL, Albers P, Budach W (Hrsg) Klinische Onkologie 2009/2010, Bd 4: Uroonkologie. dup, Düsseldorf University Press, ISBN 978-3-940671-18-9, S 38–46

  16. Mueller-Lisse UG, Scherr MK, Mueller-Lisse UL (2008) Male pelvis: prostate. In: Reiser MF, Semmler W, Hricak H (eds) Magnetic resonance tomography, 4. Aufl. Springer, Berlin Heidelberg New York, pp 1018–1039

  17. Mueller-Lisse UG, Swanson MG, Vigneron DB et al (2001) Time-dependent effects of hormone-deprivation therapy on prostate metabolism as detected by combined magnetic resonance imaging and 3D magnetic resonance spectroscopic imaging. Magn Reson Med 46:49–57

    Article  PubMed  CAS  Google Scholar 

  18. Oto A, Kayhan A, Jiang Y et al (2010) Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology. DOI 10.1148/radiol.10100021/-/DC1

  19. Portalez D, Rollin G, Leandri P et al (2010) Prospective comparison of T2w-MRI and dynamic-contrast-enhanced MRI, 3D-MR spectroscopic imaging or diffusion-weighted MRI in repeat TRUS-guided biopsies. Eur Radiol. DOI 10.1007/s00330-010-1868-6

  20. Reinsberg SA, Payne GS, Riches SF et al (2007) Combined use of diffusion weighted MRI and 1H MR spectroscopy to increase accuracy in prostate cancer detection. AJR Am J Roentgenol 188:91–98

    Article  PubMed  Google Scholar 

  21. Reischauer C, Wilm BJ, Froehlich JM et al (2010) High-resolution diffusion tensor imaging of prostate cancer using a reduced FOV technique. Eur J Radiol. DOI 10.1016/j.ejrad.2010.06.038

  22. Rosenkrantz AB, Kopec M, Kong X et al (2010) Prostate cancer vs. post-biopsy hemorrhage: diagnosis with T2- and diffusion-weighted imaging. J Magn Reson Imaging 31:1387–1394

    Article  PubMed  Google Scholar 

  23. Seitz M, Scher B, Scherr M et al (2007) Bildgebende Verfahren bei der Diagnose des Prostatakarzinoms. Urologe A-46:W1435–1446

    Google Scholar 

  24. Song I, Kim CK, Park BK, Park W (2010) Assessment of response to radiotherapy for prostate cancer: value of diffusion-weighted MRI at 3 T. AJR 194:W477–W482. DOI 10.2214/AJR.09.3557

    Article  PubMed  Google Scholar 

  25. S3-Leitlinie Prostatakarzinom: „Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms“ unter: http://www.leitlinien.net/ (Stand: 22.12.2009)

  26. Tan CH, Wang J, Kundra V (2010) Diffusion weighted imaging in prostate cancer. Eur Radiol. DOI 10.1007/s00330-010-1960-y; published online 09-October-2010

  27. Wittekind C, Mezer HJ, Bootz F (Hrsg) (2002) UICC – International Union Against Cancer: TNM-Klassifikation maligner Tumoren. 6. Aufl. Springer, Heidelberg Berlin New York, pp 295

  28. Woodfield CA, Tung GA, Grand DJ et al (2010) Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. AJR 194:W316–W322. DOI 10.2214/AJR.09.2651

    Article  PubMed  Google Scholar 

  29. Xu J, Humphrey PA, Kibel AS et al (2009) Magnetic resonance diffusion characteristics of histologically defined prostate cancer in humans. Magn Reson Med 61:842–850

    Article  PubMed  Google Scholar 

  30. Yağcı AB, Özarı N, Aybek Z, Düzcan E (2010) The value of diffusion-weighted MRI for prostate cancer detection and localization. Diagn Interv Radiol. DOI 10.4261/1305-3825.DIR.3399-10.1; published online 6-August-2010

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U.G. Mueller-Lisse M.B.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller-Lisse, U., Mueller-Lisse, U., Zamecnik, P. et al. Diffusionsgewichtete MRT der Prostata. Radiologe 51, 205–214 (2011). https://doi.org/10.1007/s00117-010-2061-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-010-2061-2

Schlüsselwörter

Keywords

Navigation