Skip to main content
Log in

Regional collapse of symbiotic specificity between lucanid beetles and canestriniid mites

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The intensity of interspecific interactions between hosts and symbionts varies among populations of each organism because of differences in the biotic and abiotic environment. We found geographic mosaics in associations between lucanid beetles (Dorcus rectus and Dorcus striatipennis) and symbiotic mites (Haitlingeria sp. and Sandrophela sp., respectively) that were caused by the collapse of host specificity in the northern part of Japan. Haitlingeria sp. was only collected from the surface of the exoskeleton of D. rectus in south and central Japan. Sandrophela sp. showed host specificity in southern to central Japan but was found on both beetle species in areas where Haitlingeria sp. was not found. Because Haitlingeria sp. was able to reproduce on D. rectus collected from Haitlingeria-free regions and no significant differences were observed in average temperature between the host-specific and nonspecific regions bordering on each other, we suggest that the expansion of Haitlingeria sp. in the north has been limited for unknown reasons. When both mites were placed together on D. rectus, only Haitlingeria sp. reproduced, probably because it killed Sandrophela sp., especially juveniles. Thus, we conclude that Sandrophela sp. has expanded its host use to include D. rectus in areas where Haitlingeria sp. is absent. We hypothesise that false host specificity in the canestriniids has been maintained by habitat isolation and/or aggressive behaviour toward competitors. We suggest that host-specific canestriniids provide benefits to hosts that do not develop countermeasures to exclude micro- or macroparasites from their surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Augustine L, Muller-Parker G (1998) Selective predation by the mosshead sculpin Clinocottus globiceps on the sea anemone Anthopleura elegantissima and its two algal symbionts. Limnol Oceanogr 43:711–715. doi:10.4319/lo.1998.43.4.0711

    Article  Google Scholar 

  • Bourke P, Magnan P, Rodriáguez MA (1999) Phenotypic responses of lacustrine brook charr in relation to the intensity of interspecific competition. Evol Ecol 13:19–31. doi:10.1023/A:1006530029418

    Article  Google Scholar 

  • Brown JM, Wilson DS (1994) Poecilochirus carabi: behavioral and life history adaptations to different hosts and the consequences of geographical shifts in host communities. In: Houck MA (ed) Mites. Chapman and Hall, NY, pp 1–22

    Chapter  Google Scholar 

  • Brown SP, Inglis RF, Taddei F (2009) Evolutionary ecology of microbial wars: within-host competition and (incidental) virulence. Evol Appl 2:32–39. doi:10.1111/j.1752-4571,2008.00059.x

    Article  Google Scholar 

  • De Moraes CM, Mescher MC (2005) Intrinsic competition between larval parasitoids with different degrees of host specificity. Ecol Entomol 30:564–570. doi:10.1111/j.0307-6946.2005.00723.x

    Article  Google Scholar 

  • Dobson AP (1985) The population dynamics of competition between parasites. Parasitology 91:17–347. doi:10.1017/S0031182000057401

    Article  Google Scholar 

  • Fallon SM, Bermingham E, Ricklefs RE (2005) Host specialization and geographic localization of avian malaria parasites: a regional analysis in the Lesser Antilles. Am Nat 165:466–480. doi:10.1086/428430

    Article  PubMed  Google Scholar 

  • Fujita H (2010) The lucanid beetles of the world, vol 1. Mushi-Sha, Tokyo

    Google Scholar 

  • Ganter PF (2006) Yeasts and invertebrate associations. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Verlag, pp 303–370. doi:10.1007/3-540-30985-3_14

  • Geospatial Information Authority of Japan (1990) The national atlas of Japan. GSI, Tsukuba

    Google Scholar 

  • Goka K, Kojima H, Okabe K (2004) Biological invasion caused by commercialization of stag beetles in Japan. Glob Environ Res 8:67–74

    Google Scholar 

  • Hosoya T, Araya K (2005) Phylogeny of Japanese stag beetles (Coleoptera: Lucanidae) inferred from mtrRNA gene sequences with reference to the evolution of sexual dimorphism in mandibles. Zool Sci 22:1305–1318. doi:10.2108/zsj.22.1305

    Article  PubMed  CAS  Google Scholar 

  • Hosoya T, Honda M, Araya K (2001) Genetic variation of 16S rRNA observed in Ceruchus lignarius and Dorcus rectus rectus (Coleptera: lucanidae). Entomol Sci 4:335–344

    Google Scholar 

  • Houck MA, OConnor BM (1991) Ecological and evolutionary significance of phoresy in the Astigmata. Ann Rev Entomol 36:611–636. doi:10.1146/annurev.en.36.010191.003143

    Article  Google Scholar 

  • Hunter PE, Rosario RMT (1988) Associations of Mesostigmata with other arthropods. Ann Rev Entomol 33:393–417. doi:10.1146/annurev.en.33.010188.002141

    Article  Google Scholar 

  • Japan Meteorological Agency (2012) Climate statistics. http://www.data.jma.go.jp/obd/stats/data/en/index.html. Accessed 11 May 2012

  • Kanzaki N, Taki H, Masuya H, Okabe K, Tanaka R, Abe F (2011) Diversity of stag beetle-associated nematodes in Japan. Environ Entomol 40:281–288. doi:10.1603/EN10182

    Article  Google Scholar 

  • Kean RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trend Ecol Evol 17:164–170. doi:10.1016/S0169-5347(02)02499-0

    Article  Google Scholar 

  • Kennedy PG, Peay KG, Bruns TD (2009) Root tip competition among ectomycorrhizal fungi: are priority effects a rule or an exception? Ecology 90:2098–2107. doi:10.1890/08-1291.1

    Google Scholar 

  • Klimov PB, OConnor BM, Knowles LL (2007) Museum specimens and phylogenies elucidate ecology’s role in coevolutionary associations between mites and their hosts. Evolution 68:1368–1379. doi:10.1111/j.1558-5646.2007.00119.x

    Article  Google Scholar 

  • Michaels K, Bornemissza G (1999) Effects of clearfell harvesting on lucanid beetles (Coleoptera: Lucanidae) in wet and dry sclerophyll forests in Tasmania. J Insect Conserv 3:85–95. doi:10.1023/A:1009696130694

    Article  Google Scholar 

  • Moorcroft PR, Pacala SW, Lewis MA (2006) Potential role of natural enemies during tree range expansions following climate change. J Theor Biol 241:601–616. doi:10.1016/j.jtbi.2005.12.019

    Article  PubMed  CAS  Google Scholar 

  • Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878. doi:10.2307/2656184

    Article  Google Scholar 

  • OConnor BM (1982) Astigmata. In: Parker SP (ed) Synopsis and classification of living organisms, vol 2. McGraw-Hill Book Company, NY, pp 146–169

    Google Scholar 

  • OConnor BM (2009) Cohort Astigmata. In: Krantz GW, Walter DE (eds) A manual of Acarology. Texas Tech University Press, Lubbock, pp 565–657

    Google Scholar 

  • Okabe K, Goka K (2008) Potential impacts on Japanese fauna of canestriniid mites (Acari: Astigmata) accidentally introduced with pet lucanid beetles from Southeast Asia. Biodiv Conserv 17:71–81. doi:10.1007/s10531-007-9231-1

    Article  Google Scholar 

  • Okabe K, Makino S (2008) Parasitic mites as part-time bodyguards of a host wasp. Proc Roy Soc B 275:2293–2297. doi:10.1098/rspb.2008.0586

    Article  Google Scholar 

  • Pedersen AE, Fenton A (2007) Emphasizing the ecology in parasite community ecology. Trend Ecol Evol 22:133–139. doi:10.1016/j.tree.2006.11.005

    Article  Google Scholar 

  • Poulin R (2003) The decay of similarity with geographical distance in parasite communities of vertebrate hosts. J Biogeogr 30:1609–1615. doi:10.1111/j.1365- 2699.2005.01288.x

    Article  Google Scholar 

  • Prenter J, MacNeil C, Dick JTA, Dun AM (2004) Roles of parasites in animal invasions. Trends Ecol Evol 19:385–390. doi:10.1016/j.tree.2004.05.002

    Article  PubMed  Google Scholar 

  • Schausberger P, Croft BA (2000) Cannibalism and intraguild predation among phytoseiid mites: are aggressiveness and prey preference related to diet specialization? Exp Appl Acarol 24:709–725. doi:10.1023/A:1010747208519

    Article  PubMed  CAS  Google Scholar 

  • StatSoft Inc (2005) STATISTICA Pro 06J. StatSoft Japan, Tokyo

    Google Scholar 

  • Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–631. doi:10.1038/nature01346

    Article  PubMed  CAS  Google Scholar 

  • Torchin ME, Byers JE, Huspeni TC (2005) Differential parasitism of native and introduced snails: replacement of a parasite fauna. Biol Invasions 7:885–894. doi:10.1007/s10530-004-2967-6

    Article  Google Scholar 

  • Walter DE, Lindquist EE, Smith IM, Cook DR, Krantz GW (2009) Order Trombidiformes. In: Krantz GW, Walter DE (eds) A manual of Acarology. Texas Tech University Press, Lubbock, pp 233–420

    Google Scholar 

  • Wang X-G, Messing RH (2003) Intra- and interspecific competition by Fopius arisanus and Diachasmimorpha tryoni (Hymenoptera: Braconidae), parasitoids of tephritid fruit flies. Biol Control 27:251–259. doi:10.1016/S1049-9644(03)00027-6

    Article  CAS  Google Scholar 

  • Wilkinson HH, Spoerke JM, Parker MA (1996) Divergence in symbiotic compatibility in a legume–bradyrhizobium mutualism. Evolution 50:1470–1477. doi:10.2307/2410884

    Article  Google Scholar 

  • Woodrings JP (1967) Environmental regulation of andropolymorphism in tyroglyphids (Acari). Proceedings of the 2nd International Congress of Acarology, Budapest, pp 433–440

  • Yahr R, Vilgalys R, DePriest PT (2006) Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol 171:847–860. doi:10.1111/j.1469-8137.2006.01792.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Goka K, Gotoh T, Itoh K, Inoue T, Iwai N, Kojima H, Kosaka H, Makihara H, Matsumoto K, Mizota K, Nunomura K, Ohsawa M, Okada M, Shimano S, Sugiura S, Suzuki Y, Tanaka E, Tanaka R, Yamaura Y, Yasui Y and Yoshida K for donating the samples. This study was partly supported by a Grant-in-Aid for Scientific Research (B), 2010, #22310145 from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimiko Okabe.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okabe, K., Masuya, H., Kanzaki, N. et al. Regional collapse of symbiotic specificity between lucanid beetles and canestriniid mites. Naturwissenschaften 99, 959–965 (2012). https://doi.org/10.1007/s00114-012-0979-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-012-0979-0

Keywords

Navigation