Skip to main content
Log in

Die Talgdrüse

The sebaceous gland

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

In der Fetal- und Neugeborenenzeit werden Entwicklung und Funktion der Talgdrüse von maternalen Androgenen, endogenen Steroiden und anderen Morphogenen gesteuert. Die offensichtlichste Funktion der Talgdrüse ist die Sebumsekretion. Kurz nach der Geburt kommt es zu einem starken Anstieg der Sebumexkretion und einem Peak in der ersten Lebenswoche, danach zu einem allmählichen Abfall. Im Rahmen der Adrenarche im Alter von etwa 9 Jahren entsteht ein erneuter Anstieg, der bis etwa zum 17. Lebensjahr anhält, bis das Erwachsenenniveau erreicht ist. Die Talgdrüse ist Zielorgan, aber auch Bildungsort von Hormonen (v. a. aktiven Androgenen). Sebozyten weisen ein breites Spektrum von Hormonrezeptoren auf. Die Wirkung von Androgenen auf die Sebumexkretion ist bekannt, die Differenzierung terminaler Sebozyten wird von Peroxisom-Proliferator-aktivierenden Rezeptorliganden unterstützt. Auch Östrogene, Glukokortikoide und Prolaktin beeinflussen die Talgdrüsenfunktion. Zusätzlich induzieren Stress-sensible kutane Signale die Produktion und Freisetzung von CRH („corticotrohin releasing hormone“) mit nachfolgender dosisabhängiger Regulierung der neutralen Lipide. Ohne exogene Einflüsse synthetisieren Talgdrüsen neben anderen Lipidfragmenten erhebliche Mengen freier Fettsäuren. Atopische bzw. seborrhoische Dermatitis, Psoriasis und Akne vulgaris zählen zu den Krankheitsbildern, an deren Entstehung und Ausprägung Talgdrüsenlipide wahrscheinlich oder sicher beteiligt sind.

Abstract

The development and function of the sebaceous gland in the fetal and neonatal periods appear to be regulated by maternal androgens and by endogenous steroid synthesis, as well as by other morphogens. The most apparent function of the glands is to excrete sebum. A strong increase in sebum excretion occurs a few hours after birth; this peaks during the first week and slowly subsides thereafter. A new rise takes place at about age 9 years with adrenarche and continues up to age 17 years, when the adult level is reached. The sebaceous gland is a target organ but also an important formation site of hormones, and especially of active androgens. Hormonal activity is based on an hormone (ligand)-receptor interaction, whereas sebocytes express a wide spectrum of hormone receptors. Androgens are well known for their effects on sebum excretion, whereas terminal sebocyte differentiation is assisted by peroxisome proliferator-activated receptor ligands. Estrogens, glucocorticoids, and prolactin also influence sebaceous gland function. In addition, stress-sensing cutaneous signals lead to the production and release of corticotrophin-releasing hormone from dermal nerves and sebocytes with subsequent dose-dependent regulation of sebaceous nonpolar lipids. Among other lipid fractions, sebaceous glands have been shown to synthesize considerable amounts of free fatty acids without exogenous influence. Atopic dermatitis, seborrheic dermatitis, psoriasis and acne vulgaris are some of the disease on which pathogenesis and severity sebaceous lipids may or are surely involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Montagna W (1963) Comparative aspects of sebaceous glands. In: Montagna W, Ellis RA, Silver AF (eds) Advances in biology of skin, vol IV. The sebaceous glands. Pergamon, Oxford, pp 32–45

  2. Nikkari T (1974) Comparative chemistry of sebum. J Invest Dermatol 62:257–267

    Article  CAS  PubMed  Google Scholar 

  3. Pochi P (1982) The sebaceous gland. In: Maibach HI, Boisits EK (eds) Neonatal skin structure and function. Marcel Dekker, New York, pp 67–80

  4. Wheatley VR (1956) Sebum: its chemistry and biochemistry. Am Perfumer 68:37–47

    Google Scholar 

  5. Thody AJ, Shuster S (1989) Control and function of sebaceous glands. Physiol Rev 69:383–416

    CAS  PubMed  Google Scholar 

  6. Mykytowycz R, Goodrich BS (1974) Skin glands as organs of communication in mammals. J Invest Dermatol 62:124–131

    Article  CAS  PubMed  Google Scholar 

  7. Ebling FJG, Cunliffe WJ (1992) Disorders of the sebaceous glands. In: Champion RH, Burton JL, Ebling FJG (eds) Textbook of Dermatology. 5th edn. Blackwell, London, pp 1699–1744

  8. Kligman AM (1963) The uses of sebum? In: Montagna W, Ellis RA, Silver AF (eds) Advances in biology of skin, vol IV. The sebaceous glands. Pergamon, Oxford, pp 110–112

  9. Cunliffe WJ (1989) Acne. Martin Dunitz, London

  10. Zouboulis CC, Seltmann H, Neitzel H, Orfanos CE (1999) Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95). J Invest Dermatol 113:1011–1020

    Article  CAS  PubMed  Google Scholar 

  11. Zouboulis CC, Schagen S, Alestas T (2008) The sebocyte culture – a model to study the pathophysiology of the sebaceous gland in sebostasis, seborrhoea and acne. Arch Dermatol Res 300:397–413

    Article  PubMed  Google Scholar 

  12. Zouboulis CC (2004) The human skin as a hormone target and an endocrine gland. Hormones 3:9–26

    PubMed  Google Scholar 

  13. Zouboulis CC (2005) Acne and sebaceous gland function. Clin Dermatol 22:360–366

    Article  Google Scholar 

  14. Hong I, Lee M, Na T et al (2008) LXRα enhances lipid synthesis in SZ95 sebocytes. J Invest Dermatol 128:1266–1272

    Article  CAS  PubMed  Google Scholar 

  15. Zouboulis CC, Chen W, Thornton MJ et al (2007) Sexual hormones in human skin. Horm Metab Res 39:85–95

    Article  CAS  PubMed  Google Scholar 

  16. Reichrath J, Lehmann B, Carlberg C et al (2007) Vitamins as hormones. Horm Metab Res 39:71–84

    Article  CAS  PubMed  Google Scholar 

  17. Schmuth M, Watson REB, Deplewski D et al (2007) Nuclear hormone receptors in human skin. Horm Metab Res 39:96–105

    Article  CAS  PubMed  Google Scholar 

  18. Agache P, Blanc D, Barrand C, Laurent R (1980) Sebum levels during the first year of life. Br J Dermatol 103:643–649

    Article  CAS  PubMed  Google Scholar 

  19. Mesiano S, Jaffe RB (1997) Developmental and functional biology of the primate fetal adrenal cortex. Endocr Rev 18:378–403

    Article  CAS  PubMed  Google Scholar 

  20. Billich A, Rot A, Lam C et al (2000) Immunohistochemical localization of steroid sulfatase in acne lesions: Implications for the contribution of dehydroepiandrosterone sulfate to the pathogenesis of acne (abstract). Horm Res 53:99

    Google Scholar 

  21. Fritsch M, Orfanos CE, Zouboulis CC (2001) Sebocytes are the key regulators of androgen homeostasis in human skin. J Invest Dermatol 116:793–800

    Article  CAS  PubMed  Google Scholar 

  22. Nicolaides N, Wells GC (1957) On the biogenesis of the free fatty acids in human skin surface fat. J Invest Dermatol 29:423–433

    CAS  PubMed  Google Scholar 

  23. Henderson CA, Taylor J, Cunliffe WJ (2000) Sebum excretion rates in mothers and neonates. Br J Dermatol 142:110–111

    Article  CAS  PubMed  Google Scholar 

  24. Ghodsi SZ, Orawa H, Zouboulis CC (2009) Prevalence, severity and severity risk factors of acne in high school pupils: A community-based study. J Invest Dermatol 129:2136–2141

    Article  CAS  PubMed  Google Scholar 

  25. Pochi PE, Strauss JS, Downing DT (1977) Sebum, acne and androgens in children (abstract). Clin Res Cardiol 25:531A

    Google Scholar 

  26. Ramasastry P, Downing DT, Pochi PE, Strauss JS (1970) Chemical composition of human skin surface lipids from birth to puberty. J Invest Dermatol 54:139–144

    Article  CAS  PubMed  Google Scholar 

  27. Pappas A, Anthonavage M, Gordon J (2002) Metabolic fate and selective utilization of major fatty acids in human sebaceous gland. J Invest Dermatol 118:164–171

    Article  CAS  PubMed  Google Scholar 

  28. Sanders D, Philpott M, Nicolle F, Kealey T (1994) The isolation and maintenance of the human pilosebaceous unit. Br J Dermatol 131:166–176

    CAS  PubMed  Google Scholar 

  29. Zouboulis CC, Xia L, Akamatsu H et al (1998) The human sebocyte culture model provides new insights into development and management of seborrhoea and acne. Dermatology 196:21–31

    Article  CAS  PubMed  Google Scholar 

  30. Chen W, Yang C, Sheu H et al (2003) Expression of peroxisome proliferator-activated receptor and CCAAT/enhancer binding protein transcription factors in cultured human sebocytes. J Invest Dermatol 121:441–447

    Article  CAS  PubMed  Google Scholar 

  31. Deplewski D, Rosenfield R (1999) Growth hormone and insulin like growth factors have different effects on sebaceous cell growth and differentiation. Endocrinology 140:4089–4094

    Article  CAS  PubMed  Google Scholar 

  32. Harrison WJ, Bull JJ, Seltmann H et al (2007) Expression of lipogenic factors galectin-12, resistin, SREBP-1 and SCD in human sebaceous glands and cultured sebocytes. J Invest Dermatol 127:1309–1317

    Article  CAS  PubMed  Google Scholar 

  33. Smith T, Cong Z, Gilliland K et al (2006) Insulin-like growth factor-1 induces lipid production in human SEB-1 sebocytes via sterol response element-binding protein-1. J Invest Dermatol 126:1226–1232

    Article  CAS  PubMed  Google Scholar 

  34. Lo Celso C, Berta M, Braun K et al (2008) Characterisation of bipotential epidermal progenitors derived from human sebaceous gland: contrasting roles of c-Myc and β-catenin. Stem Cells 26:1241–1252

    Article  Google Scholar 

  35. Ge L, Gordon J, Hsuan C et al (2003) Identification of the delta-6 desaturase of human sebaceous glands: expression and enzyme activity. J Invest Dermatol 120:707–714

    Article  CAS  PubMed  Google Scholar 

  36. Downing D, Stewart M, Wertz P, Strauss J (1986) Essential fatty acids and acne. J Am Acad Dermatol 14:221–225

    Article  CAS  PubMed  Google Scholar 

  37. Chiba K, Yoshizawa K, Makino I et al (2000) Comedogenicity of squalene monohydroperoxide in the skin after topical application. J Toxicol Sci 25:77–83

    CAS  PubMed  Google Scholar 

  38. Stewart M, Grahek M, Cambier L et al (1986) Dilutional effect of increased sebaceous gland activity on the proportion of linoleic acid in sebaceous wax esters and in epidermal acylceramides. J Invest Dermatol 87:733–736

    Article  CAS  PubMed  Google Scholar 

  39. Ottaviani M, Alestas T, Flori E et al (2006) Peroxidated squalene induces the production of inflammatory mediators in HaCaT keratinocytes: A possible role in acne vulgaris. J Invest Dermatol 126:2430–2437

    Article  CAS  PubMed  Google Scholar 

  40. Nagai A, Sato T, Akimoto N et al (2005) Isolation and identification of histone H3 protein enriched in microvesicles secreted from cultured sebocytes. Endocrinology 146:2593–2601

    Article  CAS  PubMed  Google Scholar 

  41. Akimoto N, Sato T, Iwata C et al (2005) Expression of perilipin A on the surface of lipid droplets increases along with the differentiation of hamster sebocytes in vivo and in vitro. J Invest Dermatol 124:1127–1133

    Article  CAS  PubMed  Google Scholar 

  42. Schmuth M, Ortegon A, Mao-Qiang M et al (2005) Differential expression of fatty acid transport proteins in epidermis and skin appendages. J Invest Dermatol 125:1174–1181

    Article  CAS  PubMed  Google Scholar 

  43. Greenspan P, Mayer E, Fowler S (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  CAS  PubMed  Google Scholar 

  44. Wróbel A, Seltmann H, Fimmel S et al (2003) Differentiation and apoptosis in human immortalized sebocytes. J Invest Dermatol 120:175–181

    Article  PubMed  Google Scholar 

  45. Alestas T, Ganceviciene R, Fimmel S et al (2006) Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med 84:75–87

    Article  CAS  PubMed  Google Scholar 

  46. Sato T, Imai N, Akimoto N et al (2001) Epidermal growth factor and 1alpha,25-dihydroxyvitamin D3 suppress lipogenesis in hamster sebaceous gland cells in vitro. J Invest Dermatol 117:965–970

    Article  CAS  PubMed  Google Scholar 

  47. Krause K, Schnitger A, Fimmel S et al (2007) Corticotropin-releasing hormone skin signalling is receptor-mediated and is predominant in the sebaceous glands. Horm Metab Res 39:166–170

    Article  CAS  PubMed  Google Scholar 

  48. Zouboulis CC, Seltmann H, Hiroi N et al (2002) Corticotropin releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc Natl Acad Sci U S A 99:7148–7153

    Article  CAS  PubMed  Google Scholar 

  49. Böhm M, Schiller M, Ständer S et al (2002) Evidence for expression of melanocortin-1 receptor in human sebocytes in vitro and in situ. J Invest Dermatol 118:533–539

    Article  PubMed  Google Scholar 

  50. Ganceviciene R, Graziene V, Böhm M, Zouboulis CC (2007) Increased in situ expression of melanocortin-1 receptor in sebaceous glands of lesional skin of patients with acne vulgaris. Exp Dermatol 16:547–552

    Article  CAS  PubMed  Google Scholar 

  51. Zhang L, Li W, Anthonavage M, Eisinger M (2006) Melanocortin-5 receptor: A marker of human sebocyte differentiation. Peptides 27:413–420

    Article  PubMed  Google Scholar 

  52. Böhm M, Li Z, Ottaviani M et al (2004) Beta-endorphin modulates lipogenesis in human sebocytes (abstract). J Invest Dermatol 123:A10

    Google Scholar 

  53. Seiffert K, Zouboulis CC, Seltmann H, Granstein R (2000) Expression of neuropeptide receptors by human sebocytes and stimulatory effect of their agonists on cytokine production (abstract). Horm Res 53:102

    Google Scholar 

  54. Ständer S, Schmelz M, Metze D et al (2005) Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin. J Dermatol Sci 38:177–188

    Article  PubMed  Google Scholar 

  55. Dobrosi N, Tóth B, Nagy G et al (2008) Endocannabinoids enhance lipid synthesis in human sebocytes via cannabinoid receptor-2-mediated signaling. FASEB J 22:3685–3695

    Article  CAS  PubMed  Google Scholar 

  56. Pelle E, McCarthy J, Seltmann H et al (2008) Identification of histamine receptors and reduction of squalene levels by an antihistamine in sebocytes. J Invest Dermatol 128:1280–1285

    Article  CAS  PubMed  Google Scholar 

  57. Makrantonaki E, Adjaye J, Herwig R et al (2006) Age-specific hormonal decline is accompanied by transcriptional changes in human sebocytes in vitro. Aging Cell 5:331–344

    Article  CAS  PubMed  Google Scholar 

  58. Liang T, Hoyer S, Yu R et al (1993) Immunocytochemical localization of androgen receptors in human skin using monoclonal antibodies against the androgen receptor. J Invest Dermatol 100:663–666

    Article  CAS  PubMed  Google Scholar 

  59. Bläuer M, Vaalasti A, Pauli SL et al (1991) Location of androgen receptor in human skin. J Invest Dermatol 97:264–268

    Article  PubMed  Google Scholar 

  60. Fimmel S, Saborowski A, Térouanne B et al (2007) Inhibition of the androgen receptor by antisense oligonucleotides regulates the biological activity of androgens in SZ95 sebocytes. Horm Metab Res 39:149–156

    Article  CAS  PubMed  Google Scholar 

  61. Chen W, Zouboulis CC, Fritsch M et al (1998) Evidence of heterogeneity and quantitative differences of the type 1 5α-reductase expression in cultured human skin cells. Evidence of its presence in melanocytes. J Invest Dermatol 110:84–89

    Article  CAS  PubMed  Google Scholar 

  62. Akamatsu H, Zouboulis CC, Orfanos CE (1993) Spironolactone directly inhibits proliferation of cultured human facial sebocytes and acts antagonistically to testosterone and 5 alpha-dihydrotestosterone in vitro. J Invest Dermatol 100:660–662

    Article  CAS  PubMed  Google Scholar 

  63. Makrantonaki E, Zouboulis CC (2007) Testosterone metabolism to 5α-dihydrotestosterone and synthesis of sebaceous lipids is regulated by the peroxisome proliferators-activated receptor ligand linoleic acid in human sebocytes. Br J Dermatol 156:428–432

    Article  CAS  PubMed  Google Scholar 

  64. Rosenfield R, Deplewski D, Kentsis A, Ciletti N (1998) Mechanisms of androgen induction of sebocyte differentiation. Dermatology 196:43–46

    Article  CAS  PubMed  Google Scholar 

  65. Pelletier G, Ren L (2004) Localization of sex steroid receptors in human skin. Histol Histopathol 19:629–636

    CAS  PubMed  Google Scholar 

  66. Thornton M, Nelson L, Taylor AH et al (2006) The modulation of aromatase and estrogen receptor alpha in cultured human dermal papilla cells by dexamethasone: a novel mechanism for selective action of estrogen via estrogen receptor beta? J Invest Dermatol 126:2010–2018

    Article  CAS  PubMed  Google Scholar 

  67. Thornton M, Taylor A, Mulligan K et al (2003) Oestrogen receptor-β is the predominant oestrogen receptor in human scalp skin. Exp Dermatol 12:181–190

    Article  CAS  PubMed  Google Scholar 

  68. Makrantonaki E, Vogel K, Fimmel S et al (2008) Interplay of IGF-I and 17ß-estradiol at age-specific levels in human sebocytes and fibroblasts in vitro. Exp Gerontol 43:939–946

    Article  CAS  PubMed  Google Scholar 

  69. Guy R, Green M, Kealey T (1996) Modeling acne in vitro. J Invest Dermatol 106:176–1782

    Article  CAS  PubMed  Google Scholar 

  70. Reichrath J, Mittmann M, Kamradt J, Müller S (1997) Expression of retinoid-X receptors (-alpha, -beta, -gamma) and retinoic acid receptors (-alpha, -beta, -gamma) in normal human skin: an immunohistological evaluation. Histochem J 29:127–133

    Article  CAS  PubMed  Google Scholar 

  71. Tsukada M, Schroder M, Roos T et al (2000) 13-cis retinoic acid exerts its specific activity on human sebocytes through selective intracellular isomerization to all-trans retinoic acid and binding to retinoid acid receptors. J Invest Dermatol 115:321–327

    Article  CAS  PubMed  Google Scholar 

  72. Kim M, Deplewski D, Ciletti N et al (2001) Limited cooperation between peroxisome proliferator-activated receptors and retinoid X receptor agonists in sebocyte growth and development. Mol Genet Metab 74:362–369

    Article  CAS  PubMed  Google Scholar 

  73. Reichrath J, Classen U, Meineke V et al (2000) Immunoreactivity of six monoclonal antibodies directed against 1,25-dihydroxyvitamin-D3 receptors in human skin. Histochem J 32:625–629

    Article  CAS  PubMed  Google Scholar 

  74. Krämer C, Seltmann H, Seifert M et al (2009) Characterization of the vitamin D endocrine system in human sebocytes in vitro. J Steroid Biochem Mol Biol 113:9–16

    Article  PubMed  Google Scholar 

  75. Russell L, Harrison W, Bahta A et al (2007) Characterization of liver X receptor expression and function in human skin and the pilosebaceous unit. Exp Dermatol 16:844–852

    Article  CAS  PubMed  Google Scholar 

  76. Tóth BI, Géczy T, Griger Z et al (2009) Transient receptor potential vanilloid-1 signaling as a regulator of human sebocyte biology. J Invest Dermatol 129:329–339

    Article  PubMed  Google Scholar 

  77. Melnik B, Schmitz G, Zouboulis CC (2009) Anti-acne agents attenuate FGFR2 signal transduction in acne. J Invest Dermatol 129:1868–1877

    Article  CAS  PubMed  Google Scholar 

  78. Nanney LB, Magid M, Stoscheck CM, King LE Jr (1984) Comparison of epidermal growth factor binding and receptor distribution in normal human epidermis and epidermal appendages. J Invest Dermatol 83:385–393

    Article  CAS  PubMed  Google Scholar 

  79. Saitoh K, Takahashi H, Sawada N, Parsons PG (1994) Detection of the c-met proto-oncogene product in normal skin and tumours of melanocytic origin. J Pathol 174:191–199

    Article  CAS  PubMed  Google Scholar 

  80. Oeff MK, Seltmann H, Hiroi N et al (2006) Differential regulation of Toll-like receptor and CD14 pathways by retinoids and corticosteroids in human sebocytes. Dermatology 213:266

    Article  PubMed  Google Scholar 

  81. Nagy I, Pivarcsi A, Kis K et al (2006) Propionibacterium acnes and lipopolysaccharide induce the expression of antibacterial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect 8:2195–2205

    Article  CAS  PubMed  Google Scholar 

  82. Chen W, Tsai S-J, Sheu H-M et al (2010) Testosterone synthesized in cultured human SZ95 sebocytes mainly derives from dehydroepiandrosterone. Exp Dermatol 19:470–472

    Article  PubMed  Google Scholar 

  83. Kim MH, Herrmann WL (1969) In vitro metabolsim of dehydroepiandrosterone sulphate in foreskin, abdominal skin and vaginal mucosa. J Clin Endocrinol Metab 28:187–191

    Article  Google Scholar 

  84. Deplewski D, Rosenfield RL (2000) Role of hormones in pilosebaceous unit development. Endocr Rev 21:363–392

    Article  CAS  PubMed  Google Scholar 

  85. Toh YC (1980) Effect of ovarectomy at birth on regulation of sebaceous glands in rats. J Endocrinol 86:179–182

    Article  CAS  PubMed  Google Scholar 

  86. Shuster S, Hinks WM, Thody AJ (1977) Effect of sex and age at gonadectomy on the sebaceous response to progesterone. J Endocrinol 73:67–70

    Article  CAS  PubMed  Google Scholar 

  87. Pochi PE, Strauss JS, Mescon H (1963) The role of adrenocortical steroids in the control of human sebaceous gland activity. J Invest Dermatol 41:391–399

    CAS  PubMed  Google Scholar 

  88. Leveque JL, Piecard-Franchimont C, Rigal J de et al (1991) Effects of topical coricosteroids on human sebum production assessed by two different methods. Arch Dermatol Res 283:372–376

    Article  CAS  PubMed  Google Scholar 

  89. Ahsan MK, Urano Y, Kato S et al (1998) Immunohistochemical localization of thyroid hormone nuclear receptors in human hair follicles and in vitro effect of l-trijodthyronine on cultured cells of hair follicles and skin. J Med Invest 44:179–184

    CAS  PubMed  Google Scholar 

  90. Billoni N, Buan B, Gautier B et al (2000) Thyroid hormone receptor β1 is expressed in the human hair follicle. Br J Dermatol 142:645–652

    Article  CAS  PubMed  Google Scholar 

  91. Orfanos CE, Adler YD, Zouboulis CC (2000) The SAHA syndrome. Horm Res 54:251–258

    Article  CAS  PubMed  Google Scholar 

  92. Burton JL, Libman LJ, Cunliffe WJ et al (1972) Sebum excretion in acromegaly. Br Med J 1:406–408

    Article  CAS  PubMed  Google Scholar 

  93. Ebling FJG, Ebling E, Randall V, Skinner J (1975) The effects of hypophysectomy and of bovine growth hormone on the responses to testosterone of prostate, preputial, Harderian and lacrymal glands and of brown adipose tissue in the rat. J Endocrinol 66:401–406

    Article  CAS  PubMed  Google Scholar 

  94. Ganceviciene R, Graziene V, Fimmel S, Zouboulis CC (2009) Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris. Br J Dermatol 160:345–352

    Article  CAS  PubMed  Google Scholar 

  95. Ebling FJG, Ebling E, Randall V, Skinner J (1975) The sebotrophic action of growth hormone (BGH) in the rat. Br J Dermatol 92:325–332

    Article  CAS  PubMed  Google Scholar 

  96. Glickman SP, Rosenfield RL, Bergenstal RM, Helke J (1982) Multiple androgenic abnormalities, including elevated free testosterone, in hyperprolactinemic women. J Clin Endocrinol Metab 55:251–257

    Article  CAS  PubMed  Google Scholar 

  97. Zouboulis CC, Böhm M (2004) Neuroendocrine regulation of sebocytes – a pathogenetic link between stress and acne. Exp Dermatol 13(Suppl 4):31–35

    Article  CAS  PubMed  Google Scholar 

  98. Schaich B, Korting HC, Hollmann J (1993) Hautlipide bei mit Seborrhoe- und Sebostase-assoziierten Hauterkrankungen. Hautarzt 44:75–80

    CAS  PubMed  Google Scholar 

  99. Ead RD, Fairbank RA, Cunliffe WJ (1977) Sebum excretion rate, surface lipid composition and constitutional eczema. Clin Exp Dermatol 2:361–364

    Article  CAS  PubMed  Google Scholar 

  100. Saint-Leger D, Francois AM, Leveque JL et al (1989) Stratum corneum lipids in skin xerosis. Dermatologica 178:151–155

    Article  CAS  PubMed  Google Scholar 

  101. Downing DT, Stewart ME, Strauss JS (1986) Changes in sebum secretion and the sebaceous gland. Dermatol Clin 4:419–423

    CAS  PubMed  Google Scholar 

  102. Headington JT, Gupta AK, Goldfarb MT et al (1989) A morphometric and histologic study of the scalp in psoriasis. Paradoxical sebaceous gland atrophy and decreased hair shaft diameters without alopecia. Arch Dermatol 125:639–642

    Article  CAS  PubMed  Google Scholar 

  103. Shahrad P, Marks R (1976) Hair follicle kinetics in psoriasis. Br J Dermatol 94:7–12

    Article  CAS  PubMed  Google Scholar 

  104. Nicolaides N, Fu HC, Ansari MNA, Rice GR (1972) The fatty acids of esters and sterol esters from vernix caseosa and from human surface lipid. Lipids 7:506–517

    Article  CAS  PubMed  Google Scholar 

  105. Katsambas AD, Katoulis AC, Stavropoulos P (1999) Acne neonatorum: a study of 22 cases. Int J Dermatol 38:128–130

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.C. Zouboulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zouboulis, C. Die Talgdrüse. Hautarzt 61, 467–477 (2010). https://doi.org/10.1007/s00105-009-1894-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-009-1894-y

Schlüsselworte

Keywords

Navigation