Skip to main content
Log in

Präzision von „target-controlled infusion“ (TCI) mit zwei unterschiedlichen Propofolformulierungen

Accuracy of target-controlled infusion (TCI) with 2 different propofol formulations

  • Originalien
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

„Target controlled infusion“ (TCI) von Propofol war zunächst nur mit kodierten Fertigspritzen für das System Disoprifusor® möglich. Neuere TCI-Systeme erlauben den Einsatz beliebiger Propofolformulierungen. Wir haben die Präzision einer TCI sowie die Pharmakokinetik für zwei unterschiedliche Propofolformulierungen untersucht.

Material und Methoden

Zehn Probanden erhielten Disoprivan® 1% und Propofol 1% MCT Fresenius® als TCI unter Verwendung des Disoprifusor®-Modells. Der Vorhersagefehler der TCI wurde aus gemessenen arteriellen Konzentrationen bestimmt und die Pharmakokinetik mit einem Drei-Kompartiment-Modell analysiert.

Ergebnisse

Der mittlere Fehler und der mittlere absolute Fehler waren -1,4% und 23,3% für Disoprivan® 1% sowie -5,9% und 17,8% für Propofol 1% MCT Fresenius®. Die beiden Propofolformulierungen zeigten gleiche Pharmakokinetik mit einem kleineren Verteilungsvolumen als zur TCI-Steuerung verwendet.

Schlussfolgerungen

Das Disoprifusor®-Modell kann auch mit Propofol 1% MCT Fresenius® verwendet werden. Das große Verteilungsvolumen dieses Modells kann zu einem Überschießen der Konzentration führen.

Abstract

Background

Target-controlled infusion (TCI) of propofol was initially realized as a device for prefilled syringes (Diprifusor®). New TCI systems can be used with any propofol formulation. We compared two different propofol formulations with respect to accuracy of TCI and pharmacokinetics.

Materials and methods

A total of 10 volunteers received Diprivan® 1% and Propofol 1% MCT Fresenius® as TCI using the pharmacokinetic model of the Diprifusor®. The prediction error was determined from measured arterial concentrations. A three-compartment model was fitted to the concentration data.

Results

The median prediction error and the median absolute prediction error were -1.4% and 23.3% for Diprivan®, and -5.9% and 17.8% for Propofol Fresenius®. The drugs did not differ in pharmacokinetics but showed a smaller central volume of distribution than used for infusion control.

Conclusions

The pharmacokinetic model of Diprifusor® can also be used for TCI of Propofol Fresenius®. The large volume of distribution in this model may cause an overshoot in concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Absalom A, Kenny GN (1999) Current and future applications of target-controlled infusions. Drugs Today 35:823–834

    CAS  Google Scholar 

  2. Coetzee JF, Glen JB, Wium CA, Boshoff L (1995) Pharmacokinetic model selection for target controlled infusions of propofol. Assessment of three parameter sets. Anesthesiology 82:1328–1345

    Article  CAS  PubMed  Google Scholar 

  3. Cox EH, Knibbe CA, Koster VS et al. (1998) Influence of different fat emulsion-based intravenous formulations on the pharmacokinetics and pharmacodynamics of propofol. Pharm Res 15:442–448

    Article  CAS  PubMed  Google Scholar 

  4. Doenicke AW, Roizen MF, Rau J, O’Connor M, Kugler J, Klotz U, Babl J (1997) Pharmacokinetics and pharmacodynamics of propofol in a new solvent. Anesth Analg 85:1399–1403

    Article  CAS  PubMed  Google Scholar 

  5. Dutta S, Ebling WF (1998) Formulation-dependent pharmacokinetics and pharmacodynamics of propofol in rats. J Pharm Pharmacol 50:37–42

    CAS  PubMed  Google Scholar 

  6. Egan TD, Kern SE, Johnson KB, Pace NL (2003) The pharmacokinetics and pharmacodynamics of propofol in a modified cyclodextrin formulation (Captisol) versus propofol in a lipid formulation (Diprivan): an electroencephalographic and hemodynamic study in a porcine model. Anesth Analg 97:72–79

    Article  CAS  PubMed  Google Scholar 

  7. Fechner J, Albrecht S, Ihmsen H, Knoll R, Schwilden H, Schuttler J (1998) Prädiktivität und Präzision einer „target-controlled infusion“ (TCI) von Propofol mit dem System „Disoprifusor TCI“. Anaesthesist 47:663–668

    Article  CAS  PubMed  Google Scholar 

  8. Gepts E, Camu F, Cockshott ID, Douglas EJ (1987) Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg 66:1256–1263

    CAS  PubMed  Google Scholar 

  9. Knibbe CA, Aarts LP, Kuks PF, Voortman HJ, Lie AHL, Bras LJ, Danhof M (2000) Pharmacokinetics and pharmacodynamics of propofol 6% SAZN versus propofol 1% SAZN and Diprivan-10 for short-term sedation following coronary artery bypass surgery. Eur J Clin Pharmacol 56:89–95

    Article  CAS  PubMed  Google Scholar 

  10. Lange H, Stephan H, Rieke H, Kellermann M, Sonntag H, Bircher J (1990) Hepatic and extrahepatic disposition of propofol in patients undergoing coronary bypass surgery. Br J Anaesth 64:563–570

    CAS  PubMed  Google Scholar 

  11. Marsh B, White M, Morton N, Kenny GN (1991) Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 67:41–48

    CAS  PubMed  Google Scholar 

  12. Plummer GF (1987) Improved method for the determination of propofol in blood by high-performance liquid chromatography with fluorescence detection. J Chromatogr 421:171–176

    Article  CAS  PubMed  Google Scholar 

  13. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88:1170–1182

    Article  CAS  PubMed  Google Scholar 

  14. Schraag S, Flaschar J, Georgieff M (2000) Target controlled infusion (TCI)—Stellenwert und klinische Perspektiven. Anasthesiol Intensivmed Notfallmed Schmerzther 35:12–20

    Article  CAS  PubMed  Google Scholar 

  15. Schuttler J, Ihmsen H (2000) Population pharmacokinetics of propofol: a multicenter study. Anesthesiology 92:727–738

    Article  CAS  PubMed  Google Scholar 

  16. Schuttler J, Kloos S, Schwilden H, Stoeckel H (1988) Total intravenous anaesthesia with propofol and alfentanil by computer-assisted infusion. Anaesthesia 43 Suppl:2–7

    Google Scholar 

  17. Theilen HJ, Adam S, Albrecht MD, Ragaller M (2002) Propofol in a medium- and long-chain triglyceride emulsion: pharmacological characteristics and potential beneficial effects. Anesth Analg 95:923–929

    Article  CAS  PubMed  Google Scholar 

  18. Varvel JR, Donoho DL, Shafer SL (1992) Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm 20:63–94

    CAS  PubMed  Google Scholar 

  19. Vuyk J, Engbers FH, Burm AG, Vletter AA, Bovill JG (1995) Performance of computer-controlled infusion of propofol: an evaluation of five pharmacokinetic parameter sets. Anesth Analg 81:1275–1282

    Article  CAS  PubMed  Google Scholar 

  20. Ward DS, Norton JR, Guivarc’h PH, Litman RS, Bailey PL (2002) Pharmacodynamics and pharmacokinetics of propofol in a medium-chain triglyceride emulsion. Anesthesiology 97:1401–1408

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor weist auf eine Verbindung mit folgender Firma/Firmen hin: Diese Arbeit wurde gefördert durch Fresenius-Kabi GmbH, Deutschland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ihmsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ihmsen, H., Jeleazcov, C., Schüttler, J. et al. Präzision von „target-controlled infusion“ (TCI) mit zwei unterschiedlichen Propofolformulierungen. Anaesthesist 53, 937–943 (2004). https://doi.org/10.1007/s00101-004-0753-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-004-0753-6

Schlüsselwörter

Keywords

Navigation