Skip to main content
Log in

Multicenter evaluation of different target volume delineation concepts in pediatric Hodgkin’s lymphoma

A case study

Multicenterevaluierung unterschiedlicher Zielvolumenkonzepte für pädiatrische Hodgkin-Erkrankungen

Eine Fallstudie

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

In pediatric Hodgkin’s lymphoma (PHL) improvements in imaging and multiagent chemotherapy have allowed for a reduction in target volume. The involved-node (IN) concept is being tested in several treatment regimens for adult Hodgkin’s lymphoma. So far there is no consensus on the definition of the IN. To improve the reproducibility of the IN, we tested a new involved-node-level (INL) concept, using defined anatomical boundaries as basis for target delineation. The aim was to evaluate the feasibility of IN and INL concepts for PHL in terms of interobserver variability.

Patients and methods

The INL concept was defined for the neck and mediastinum by the PHL Radiotherapy Group based on accepted concepts for solid tumors. Seven radiation oncologists from six European centers contoured neck and mediastinal clinical target volumes (CTVs) of 2 patients according to the IN and the new INL concepts. The median CTVs, coefficient of variation (COV), and general conformity index (CI) were assessed. The intraclass correlation coefficient (ICC) for reliability of delineations was calculated.

Results

All observers agreed that INL is a feasible and practicable delineation concept resulting in stronger interobserver concordance than the IN (mediastinum CIINL = 0.39 vs. CIIN = 0.28, neck left CIINL = 0.33; CIIN = 0.18; neck right CIINL = 0.24, CIIN = 0.14). The COV showed less dispersion and the ICC indicated higher reliability of contouring for INL (ICCINL = 0.62, p < 0.05) as for IN (ICCIN = 0.40, p < 0.05).

Conclusion

INL is a practical and feasible alternative to IN resulting in more homogeneous target delineation, and it should be therefore considered as a future target volume concept in PHL.

Zusammenfassung

Hintergrund und Zielsetzung

Im Rahmen der risikoadaptierten Therapie und verbesserten Bildgebung konnte bei pädiatrischen Hodgkin-Erkrankungen (PHL) das Bestrahlungsvolumen sukzessiv verkleinert werden. Die Involved-node-Bestrahlung (IN) wird zurzeit in verschiedenen Studien an Erwachsenen durchgeführt. Bisher gibt es keine einheitliche IN-Definition. Um eine verbesserte Reproduzierbarkeit zu erreichen, wird die Involved-node-level-Bestrahlung (INL) als Zielvolumenkonzept eingesetzt. Studienziel war es, anhand von Analysen der Interbeobachtervariation die Umsetzbarkeit von IN und INL bei PHL zu überprüfen.

Patienten und Methoden

Entsprechend der IN- und INL-Definition konturierten 7 Strahlentherapeuten aus 6 europäischen Zentren ein zervikales und ein mediastinales klinisches Zielvolumen (CTV) von 2 PHL-Patienten. Das mediane CTV, der Variationskoeffizient (COV) und der Konfomitätsindex (CI) wurden ermittelt. Die Intraklassenkorrelation (ICC) wurde zur Bestimmung der Konturierungsreliabilität innerhalb des IN- und INL-Konzepts berechnet.

Ergebnisse

Das mediane CTVINL war größer als das mediane CTVIN. Die Interbeobachterübereinstimmung war bei der INL im Vergleich zur IN besser (Mediastinum: CIINL = 0,39; CIIN = 0,28; Hals links: CIINL = 0,33; CIIN = 0,18; Hals rechts: CIINL = 0,24; CIIN = 0,14). Der COV zeigte eine geringere Streuung bei der INL-Konturierung, die ICC weist eine bessere Konturierungsreliabilität innerhalb der INL (ICCINL = 0,62, p < 0,05) im Vergleich zur IN (ICCIN = 0,40, p < 0,05) auf.

Schlussfolgerung

Die INL ist eine praktikable und reproduzierbare Alternative zur IN, die zu einer homogeneren Konturierung führt und sich somit als Zielvolumenkonzept für PHL empfiehlt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Bowden P, Fisher R, Mac Manus M et al (2002) Measurement of lung tumor volumes using three-dimensional computer planning software. Int J Radiat Oncol Biol Phys 53:566–573

    Article  PubMed  Google Scholar 

  2. Campbell BA, Voss N, Pickles T et al (2008) Involved-nodal radiation therapy as a component of combination therapy for limited-stage Hodgkin’s lymphoma: a question of field size. J Clin Oncol 26:5170–5174

    Article  PubMed  Google Scholar 

  3. Chapet O, Kong FM, Quint LE et al (2005) CT-based definition of thoracic lymph node stations: an atlas from the University of Michigan. Int J Radiat Oncol Biol Phys 63:170–178

    Article  PubMed  Google Scholar 

  4. Dörffel W, Lüders H, Rühl U et al (2003) Preliminary results of the multicenter trial GPOH-HD 95 for the treatment of Hodgkin’s disease in children and adolescents: analysis and outlook. Klin Padiatr 215(3):139–145

    Article  PubMed  Google Scholar 

  5. Eich HT, Müller RP, Engenhart-Cabillic R et al (2008) Involved-node radiotherapy in early-stage Hodgkin’s lymphoma. Definition and guidelines of the German Hodgkin Study Group (GHSG). Strahlenther Onkol 184:406–410

    Article  PubMed  Google Scholar 

  6. Fodor A, Fiorino C, Dell’Oca I et al (2011) PET-guided dose escalation tomotherapy in malignant pleural mesothelioma. Strahlenther Onkol 187(11):736–743

    Article  PubMed  Google Scholar 

  7. Fotina I, Lütgendorf-Caucig C, Stock M et al (2012) Critical discussion of evaluation parameters for inter observer variability in target definition for radiation therapy. Strahlenther Onkol 188(2):160–167

    Article  PubMed  CAS  Google Scholar 

  8. Genovesi D, Cèfaro GA, Vinciguerra A et al (2011) Interobserver variability of clinical target volume delineation in supra-diaphragmatic Hodgkin’s disease: a multi-institutional experience. Strahlenther Onkol 187:357–366

    Article  PubMed  Google Scholar 

  9. Girinsky T, Specht L, Ghalibafian M et al (2008) The conundrum of Hodgkin lymphoma nodes: to be or not to be included in the involved node radiation fields. The EORTC-GELA lymphoma group guidelines. Radiother Oncol 88:202–210

    Article  PubMed  Google Scholar 

  10. Girinsky T, Maazen R van der, Specht L et al (2006) Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother Oncol 79:270–277

    Article  PubMed  Google Scholar 

  11. Grégoire V, Levendag P, Ang KK et al (2003) CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiother Oncol 69:227–236

    Article  PubMed  Google Scholar 

  12. International Commission of Radiation Units and Measurements. Prescribing, Recording and Reporting Photon Beam Therapy. ICRU Report 50, ICRU, Bethesda, MD, 1993

  13. International Commission of Radiation Units and Measurements. Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU report 50). ICRU Report 62, ICRU, Bethesda, MD, 1999

  14. Körholz D, Claviez A, Hasenclever D et al (2004) The concept of the GPOH-HD 2003 therapy study for pediatric Hodgkin’s disease: evolution in the tradition of the DAL/GPOH studies. Klin Padiatr 216:150–156

    Article  PubMed  Google Scholar 

  15. Körholz D, Wallace H, Landman-Parker J (2006) EuroNet-Paediatric Hodgkin’s Lymphoma Group, First international Inter-Group Study for classical Hodgkin’s Lymphoma in Children and Adolescents, Radiotherapy Manual; Version 2006-8-11

  16. Kouwenhoven E, Giezen M, Struikmans H (2009) Measuring the similarity of target volume delineations independent of the number of observers. Phys Med Biol 54:2863–2873

    Article  PubMed  Google Scholar 

  17. Kriz J, Bangard C, Haverkamp U et al (2012) Quality control of involved-field radiotherapy for patients with early stage Hodgkin’s lymphoma based on a central prospective review: comparison of the results between two study generations of the German Hodgkin Study Group. Strahlenther Onkol (Epub ahead of print)

  18. Lammering G, De Ruysscher D, Baardwijk A van et al (2010) The use of FDG-PET to target tumors by radiotherapy. Strahlenther Onkol 186:471–481

    Article  PubMed  Google Scholar 

  19. Lütgendorf-Caucig C, Fotina I, Stock M et al (2011) Feasibility of CBCT based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol 98:154–161

    Article  PubMed  Google Scholar 

  20. Mauz-Körholz C, Hasenclever D, Dörffel W et al (2010) Procarbazine-free OEPA-COPDAC chemotherapy in boys and standard OPPA-COPP in girls have comparable effectiveness in pediatric Hodgkin’s lymphoma: the GPOH-HD-2002 study. J Clin Oncol 28:3680–3686

    Article  PubMed  Google Scholar 

  21. Metwally H, Courbon F, David I et al (2011) Coregistration of prechemotherapy PET-CT for planning pediatric hodgkin’s disease radiotherapy significantly diminishes interobserver variability of clinical target volume definition. Int J Radiat Oncol Biol Phys 80:793–799

    Article  PubMed  Google Scholar 

  22. Müller RP, Eich HT (2005) The development of quality assurance programs for radiotherapy within the German Hodgkin Study Group (GHSG). Introduction, continuing work, and results of the radiotherapy reference panel. Strahlenther Onkol 181:557–566

    Article  PubMed  Google Scholar 

  23. Pötter R (1999) Paediatric Hodgkin’s disease. Eur J Cancer 10:1466–1474

    Article  Google Scholar 

  24. Pötter R, Dieckmann K, Hofmann U et al (1995) Individualisation of radiation fields based on modern sectional imaging within combination treatment of pediatric Hodgkin’s Disease (HD): evaluation of 386 patients from the German-Austrian multicentre trial (HD-90). Int J Radiat Oncol Biol Phys 13(Suppl 1):178

    Article  Google Scholar 

  25. Senan S, Piet A, Lagerwaard F (2007) Involved-node radiotherapy to the mediastinum. Radiother Oncol 82:108–109 (author reply 109–110)

    Article  PubMed  Google Scholar 

  26. Roth SL, Dühmke E, Kirschner H et al (1990) Radiotherapeutic quality assurance in the Hodgkin’s disease study HD4 supported by the BMFT (Bundesministerium für Forschung und Technologie). Strahlenther Onkol 166:584–587

    PubMed  CAS  Google Scholar 

  27. Schellong G, Pötter R, Brämswig J et al (1999) High cure rates and reduced long-term toxicity in pediatric Hodgkin’s disease: the German-Austrian multicenter trial DAL-HD-90. The German-Austrian Pediatric Hodgkin’s Disease Study Group. J Clin Oncol 17:3736–3744

    PubMed  CAS  Google Scholar 

  28. Tyng CJ, Chojniak R, Pinto PN et al (2009) Conformal radiotherapy for lung cancer: interobservers’ variability in the definition of gross tumor volume between radiologists and radiotherapists. Radiat Oncol 4:28

    Article  PubMed  Google Scholar 

  29. Stroom JC, Heijmen BJ (2002) Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol 64:75–83

    Article  PubMed  Google Scholar 

  30. Weiss E, Hess CF (2003) The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy theoretical aspects and practical experiences. Strahlenther Onkol 179:21–30

    Article  PubMed  Google Scholar 

  31. Welte B, Suhr P, Bottke D et al (2010) Second malignancies in high—dose areas of previous tumor radiotherapy. Strahlenther Onkol 186:174–179

    Article  PubMed  Google Scholar 

  32. Wiegner EA, Donaldson SS (2011) Controversies in radiotherapy for pediatric Hodgkin’s lymphoma. Expert Rev Anticancer Ther 11:1357–1366

    PubMed  Google Scholar 

Download references

Acknowledgments

The financial support of the Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development and the Austrian National Bank, project number 12972, are gratefully acknowledged. The authors would like to gratefully acknowledge the observers Christian Carrie, Line Claude, Eve Gallop-Evans, Jack Lindh, Carola Lütgendorf-Caucig, Thomas Kuhnt, Bela Malinova, and Tanja Pelz for donating their time contouring and making this study possible.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to C. Lütgendorf-Caucig MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lütgendorf-Caucig, C., Fotina, I., Gallop-Evans, E. et al. Multicenter evaluation of different target volume delineation concepts in pediatric Hodgkin’s lymphoma. Strahlenther Onkol 188, 1025–1030 (2012). https://doi.org/10.1007/s00066-012-0182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0182-4

Keywords

Schlüsselwörter

Navigation