Skip to main content
Log in

Depletion of calcium stores contributes to progesterone-induced attenuation of calcium signaling of G protein-coupled receptors

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Progesterone non-genomically attenuates the calcium signaling of the human oxytocin receptor and several other Gαq protein-coupled receptors. High progesterone concentrations are found in the endometrium during pregnancy opposing the responsiveness of the underlying myometrium to labor-inducing hormones. Here, we demonstrate that within minutes, progesterone inhibits oxytocin- and bradykinin-induced contractions of rat uteri, calcium responses induced by platelet-activating factor in the human endometrial cell line MFE-280, and oxytocin-induced calcium signals in PHM1-31 immortalized pregnant human myometrial cells. Using human embryonic kidney (HEK293) cells as model system, we analyzed the molecular mechanisms underlying these effects. Our data indicate that progesterone rapidly depletes intracellular calcium stores. The resulting desensitization of the cells might contribute to the quiescence of the uterus during pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Astle S, Slater DM, Thornton S (2003) The involvement of progesterone in the onset of human labour. Eur J Obstet Gynecol Reprod Biol 108:177–181

    CAS  PubMed  Google Scholar 

  2. Simpson ER, Burkhart MF (1980) Acyl CoA:cholesterol acyl transferase activity in human placental microsomes: inhibition by progesterone. Arch Biochem Biophys 200:79–85

    Article  CAS  PubMed  Google Scholar 

  3. Mesiano S, Welsh TN (2007) Steroid hormone control of myometrial contractility and parturition. Semin Cell Dev Biol 18:321–331

    Article  CAS  PubMed  Google Scholar 

  4. Majewska MD, Vaupel DB (1991) Steroid control of uterine motility via gamma-aminobutyric acidA receptors in the rabbit: a novel mechanism? J Endocrinol 131:427–434

    Article  CAS  PubMed  Google Scholar 

  5. Putnam CD, Brann DW, Kolbeck RC, Mahesh VB (1991) Inhibition of uterine contractility by progesterone and progesterone metabolites: mediation by progesterone and gamma amino butyric acidA receptor systems. Biol Reprod 45:266–272

    Article  CAS  PubMed  Google Scholar 

  6. Erdo SL (1984) Identification of GABA receptor binding sites in rat and rabbit uterus. Biochem Biophys Res Commun 125:18–24

    Article  CAS  PubMed  Google Scholar 

  7. Erdo SL, Villanyi P, Laszlo A (1989) Gestational changes of GABA levels and GABA binding in the human uterus. Life Sci 44:2009–2014

    Article  CAS  PubMed  Google Scholar 

  8. Perusquia M, Villalon CM (1996) The relaxant effect of sex steroids in rat myometrium is independent of the gamma-amino butyric acid system. Life Sci 58:913–926

    Article  CAS  PubMed  Google Scholar 

  9. Cabral R, Gutierrez M, Fernandez AI, Cantabrana B, Hidalgo A (1994) Progesterone and pregnanolone derivatives relaxing effect on smooth muscle. Gen Pharmacol 25:173–178

    CAS  PubMed  Google Scholar 

  10. Grazzini E, Guillon G, Mouillac B, Zingg HH (1998) Inhibition of oxytocin receptor function by direct binding of progesterone. Nature 392:509–512

    Article  CAS  PubMed  Google Scholar 

  11. Astle S, Khan RN, Thornton S (2003) The effects of a progesterone metabolite, 5 beta-dihydroprogesterone, on oxytocin receptor binding in human myometrial membranes. BJOG 110:589–592

    CAS  PubMed  Google Scholar 

  12. Burger K, Fahrenholz F, Gimpl G (1999) Non-genomic effects of progesterone on the signaling function of G protein-coupled receptors. FEBS Lett 464:25–29

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, Kanda Y, Roberts DJ, Ecker JL, Losel R, Wehling M, Peluso JJ, Pru JK (2008) Expression of progesterone receptor membrane component 1 and its partner serpine 1 mRNA binding protein in uterine and placental tissues of the mouse and human. Mol Cell Endocrinol 287:81–89

    Article  CAS  PubMed  Google Scholar 

  14. Zhu Y, Hanna RN, Schaaf MJ, Spaink HP, Thomas P (2008) Candidates for membrane progestin receptors—past approaches and future challenges. Comp Biochem Physiol C Toxicol Pharmacol 148:381–389

    Article  PubMed  Google Scholar 

  15. Fernandes MS, Pierron V, Michalovich D, Astle S, Thornton S, Peltoketo H, Lam EW, Gellersen B, Huhtaniemi I, Allen J, Brosens JJ (2005) Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues. J Endocrinol 187:89–101

    Article  CAS  PubMed  Google Scholar 

  16. Karteris E, Zervou S, Pang Y, Dong J, Hillhouse EW, Randeva HS, Thomas P (2006) Progesterone signaling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term. Mol Endocrinol 20:1519–1534

    Article  CAS  PubMed  Google Scholar 

  17. Krietsch T, Fernandes MS, Kero J, Losel R, Heyens M, Lam EW, Huhtaniemi I, Brosens JJ, Gellersen B (2006) Human homologs of the putative G protein-coupled membrane progestin receptors (mPRalpha, beta, and gamma) localize to the endoplasmic reticulum and are not activated by progesterone. Mol Endocrinol 20:3146–3164

    Article  CAS  PubMed  Google Scholar 

  18. Battye KM, Evans G, O’Neill C (1996) Ovine endometrium synthesizes and releases platelet-activating factor, which can cause the release of prostaglandin F2 alpha by the uterus in situ. Biol Reprod 54:355–363

    Article  CAS  PubMed  Google Scholar 

  19. O’Brien WF (1995) The role of prostaglandins in labor and delivery. Clin Perinatol 22:973–984

    PubMed  Google Scholar 

  20. Monga M, Ku CY, Dodge K, Sanborn BM (1996) Oxytocin-stimulated responses in a pregnant human immortalized myometrial cell line. Biol Reprod 55:427–432

    Article  CAS  PubMed  Google Scholar 

  21. Holton P (1948) A modification of the method of Dale and Laidlaw for standardization of posterior pituitary extract. Br J Pharmacol 3:328–334

    CAS  Google Scholar 

  22. Munsick RA (1960) Effect of magnesium ion on the response of the rat uterus to neurohypophysial hormones and analogues. Endocrinology 6:451–457

    Article  CAS  PubMed  Google Scholar 

  23. Luconi M, Bonaccorsi L, Maggi M, Pecchioli P, Krausz C, Forti G, Baldi E (1998) Identification and characterization of functional nongenomic progesterone receptors on human sperm membrane. J Clin Endocrinol Metab 83:877–885

    Article  CAS  PubMed  Google Scholar 

  24. Marc S, Leiber D, Harbon S (1988) Fluoroaluminates mimic muscarinic- and oxytocin-receptor-mediated generation of inositol phosphates and contraction in the intact guinea-pig myometrium. Role for a pertussis/cholera-toxin-insensitive G protein. Biochem J 255:705–713

    CAS  PubMed  Google Scholar 

  25. Wray S, Burdyga T, Noble K (2005) Calcium signalling in smooth muscle. Cell Calcium 38:397–407

    Article  CAS  PubMed  Google Scholar 

  26. Sanborn BM, Yue C, Wang W, Dodge KL (1998) G protein signalling pathways in myometrium: affecting the balance between contraction and relaxation. Rev Reprod 3:196–205

    Article  CAS  PubMed  Google Scholar 

  27. Falkenstein E, Heck M, Gerdes D, Grube D, Christ M, Weigel M, Buddhikot M, Meizel S, Wehling M (1999) Specific progesterone binding to a membrane protein and related nongenomic effects on Ca2+-fluxes in sperm. Endocrinology 140:5999–6002

    Article  CAS  PubMed  Google Scholar 

  28. Fukami K, Yoshida M, Inoue T, Kurokawa M, Fissore RA, Yoshida N, Mikoshiba K, Takenawa T (2003) Phospholipase Cdelta4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. J Cell Biol 161:79–88

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalez-Martinez MT, Bonilla-Hernandez MA, Guzman-Grenfell AM (2002) Stimulation of voltage-dependent calcium channels during capacitation and by progesterone in human sperm. Arch Biochem Biophys 408:205–210

    Article  CAS  PubMed  Google Scholar 

  30. Luconi M, Francavilla F, Porazzi I, Macerola B, Forti G, Baldi E (2004) Human spermatozoa as a model for studying membrane receptors mediating rapid nongenomic effects of progesterone and estrogens. Steroids 69:553–559

    Article  CAS  PubMed  Google Scholar 

  31. Falkenstein E, Schmieding K, Lange A, Meyer C, Gerdes D, Welsch U, Wehling M (1998) Localization of a putative progesterone membrane binding protein in porcine hepatocytes. Cell Mol Biol Noisy le grand 44:571–578

    CAS  PubMed  Google Scholar 

  32. Treiman M, Caspersen C, Christensen SB (1998) A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca2+-ATPases. Trends Pharmacol Sci 19:131–135

    Article  CAS  PubMed  Google Scholar 

  33. Kubli-Garfias C, Medrano-Conde L, Beyer C, Bondani A (1979) In vitro inhibition of rat uterine contractility induced by 5 alpha and 5 beta progestins. Steroids 34:609–617

    Article  CAS  PubMed  Google Scholar 

  34. Sayer RJ (2002) Intracellular Ca2+ handling. Adv Exp Med Biol 513:183–196

    CAS  PubMed  Google Scholar 

  35. Gamberucci A, Giunti R, Benedetti A (2004) Progesterone inhibits capacitative Ca2+ entry in Jurkat T lymphocytes by a membrane delimited mechanism, independently of plasma membrane depolarization. Cell Calcium 36:175–180

    Article  CAS  PubMed  Google Scholar 

  36. Swanston IA, McNatty KP, Baird DT (1977) Concentration of prostaglandin F2alpha and steroids in the human corpus luteum. J Endocrinol 73:115–122

    Article  CAS  PubMed  Google Scholar 

  37. Ruddock NK, Shi SQ, Jain S, Moore G, Hankins GD, Romero R, Garfield RE (2008) Progesterone, but not 17-alpha-hydroxyprogesterone caproate, inhibits human myometrial contractions. Am J Obstet Gynecol 199:391–397

    Article  PubMed  Google Scholar 

  38. Perusquia M, Garcia YE, Ibanez R, Kubli GC (1990) Non-genomic mechanism of action of delta-4 and 5-reduced androgens and progestins on the contractility of the isolated rat myometrium. Life Sci 47:1547–1553

    Article  CAS  PubMed  Google Scholar 

  39. Ashley RL, Clay CM, Farmerie TA, Niswender GD, Nett TM (2006) Cloning and characterization of an ovine intracellular seven transmembrane receptor for progesterone that mediates calcium mobilization. Endocrinology 147:4151–4159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Barbara Sanborn (Colorado State University, USA) for providing the PHM1-31 cells. We thank Silvia Wienken and Anne Franz for excellent technical assistance and Dr. Rolf Postina (Institute of Pharmaceutics and Biochemistry, University of Mainz) for critically reading the manuscript. This work was supported by the BMBF (JP2003G, Germany, and WTZ project number CZE01/027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Gehrig-Burger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehrig-Burger, K., Slaninova, J. & Gimpl, G. Depletion of calcium stores contributes to progesterone-induced attenuation of calcium signaling of G protein-coupled receptors. Cell. Mol. Life Sci. 67, 2815–2824 (2010). https://doi.org/10.1007/s00018-010-0360-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0360-4

Keywords

Navigation