Skip to main content

Advertisement

Log in

Functional interplay between E2F1 and chemotherapeutic drugs defines immediate E2F1 target genes crucial for cancer cell death

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The E2F1 transcription factor enhances apoptosis by DNA damage in tumors lacking p53. To elucidate the mechanism of a potential cooperation between E2F1 and chemotherapy, whole-genome microarrays of chemoresistant tumor cell lines were performed focusing on the identification of cooperation response genes (CRG). This gene class is defined by a synergistic expression response upon endogenous E2F1 activation and drug treatment. Cluster analysis revealed an expression pattern of CRGs similar to E2F1 mono-therapy, suggesting that chemotherapeutics enhance E2F1-dependent gene expression at the transcriptional level. Using this approach as a tool to explore E2F1-driven gene expression in response to anticancer drugs, we identified novel apoptosis genes such as the tumor suppressor TIEG1/KLF10 as direct E2F1 targets. We show that TIEG1/KLF10 is transcriptionally activated by E2F1 and crucial for E2F1-mediated chemosensitization of cancer cells. Our results provide a broader picture of E2F1-regulated genes in conjunction with cytotoxic treatment that allows the design of more rational therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. DeGregori J, Leone G, Ohtani A, Miron A, Nevins JR (1995) E2F-1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity. Genes Dev 9:2873–2887

    Article  CAS  PubMed  Google Scholar 

  2. Johnson DG, DeGregori J (2006) Putting the oncogenic and tumor suppressive activities of E2F into context. Curr Mol Med 6:731–738

    CAS  PubMed  Google Scholar 

  3. Phillips AC, Vousden KH (2001) E2F1 induced apoptosis. Apoptosis 6:173–182

    Article  CAS  PubMed  Google Scholar 

  4. Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin WG Jr, Livingston DM, Orkin SH, Greenberg ME (1996) E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85:549–561

    Article  CAS  PubMed  Google Scholar 

  5. Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ (1996) Tumor induction and tissue atrophy in mice lacking E2F–1. Cell 85:537–548

    Article  CAS  PubMed  Google Scholar 

  6. Stanelle J, Pützer BM (2006) E2F1-induced apoptosis: turning killers into therapeutics. Trends Mol Med 12:177–185

    Article  CAS  PubMed  Google Scholar 

  7. Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL, Vousden KH (1998) p14ARF links the tumour suppressors RB and p53. Nature 395:124–125

    Article  CAS  PubMed  Google Scholar 

  8. Stiewe T, Putzer BM (2000) Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet 26:464–469

    Article  CAS  PubMed  Google Scholar 

  9. Irwin M, Martin MC, Phillips AC, Seelan RS, Smith DI, Liu W, Flores ER, Tsai KY, Jacks T, Vousden KH, Kaelin WG Jr (2000) Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407:645–648

    Article  CAS  PubMed  Google Scholar 

  10. Furukawa Y, Nishimura N, Satoh M, Endo H, Iwase S, Yamada H, Matsuda M, Kano Y, Nakamura M (2002) Apaf-1 is a mediator of E2F-1-induced apoptosis. J Biol Chem 277:39760–39768

    Article  CAS  PubMed  Google Scholar 

  11. Hershko T, Ginsberg D (2004) Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem 279:8627–8634

    Article  CAS  PubMed  Google Scholar 

  12. Nahle Z, Polakoff J, Davuluri RV, Mc Currach ME, Jacobson MD, Narita M, Zhang MQ, Lazebrink Y, Bar-Sagi D, Lowe SW (2002) Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4:859–864

    Article  CAS  PubMed  Google Scholar 

  13. Phillips AC, Ernst MK, Bates S, Rice NR, Vousden KH (1999) E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol Cell 4:771–781

    Article  CAS  PubMed  Google Scholar 

  14. Eischen CM, Packham G, Nip J, Fee BE, Hiebert SW, Zambetti GP, Cleveland JL (2001) Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F–1. Oncogene 20:6983–69893

    Article  CAS  PubMed  Google Scholar 

  15. Racek T, Buhlmann S, Rüst F, Knoll S, Alla V, Pützer BM (2008) Transcriptional repression of the prosurvival endoplasmic reticulum chaperone GRP78/BIP by E2F1. J Biol Chem 283:34305–34314

    Article  CAS  PubMed  Google Scholar 

  16. Stevens C, La Thangue NB (2004) The emerging role of E2F-1 in the DNA damage response and checkpoint control. DNA Repair (Amst) 3:1071–1079

    Article  CAS  Google Scholar 

  17. Meng R, Phillips P, El-Deiry W (1999) p53-independent increase in E2F-1 expression enhances the cytotoxic effects of etoposide and adriamycin. Int J Oncol 14:5–14

    CAS  PubMed  Google Scholar 

  18. Rödicker F, Stiewe T, Zimmermann S, Pützer BM (2001) Therapeutic efficacy of E2F1 in pancreatic cancer correlates with TP73 induction. Cancer Res 61:7052–7055

    PubMed  Google Scholar 

  19. Gomez-Manzano C, Lemoine MG, Hu M, He J, Mitlianga P, Liu TJ, Yung AW, Fueyo J, Groves MD (2001) Adenovirally-mediated transfer of E2F–1 potentiates chemosensitivity of human glioma cells to temozolomide and BCNU. Int J Oncol 19:359–365

    CAS  PubMed  Google Scholar 

  20. Yang HL, Dong JB, Elliott MJ, Wong SL, McMasters KM (2001) Additive effect of adenovirus-mediated E2F-1 gene transfer and topoisomerase II inhibitors on apoptosis in human osteosarcoma cells. Cancer Gene Ther 8:241–251

    Article  CAS  PubMed  Google Scholar 

  21. Dong YB, Yang HL, McMasters KM (2003) E2F-1 overexpression sensitizes colorectal cancer cells to camptothecin. Cancer Gene Ther 10:168–178

    Article  CAS  PubMed  Google Scholar 

  22. Dong YB, Yang HL, Elliott MJ, McMasters KM (2002) Adenovirus-mediated E2F-1 gene transfer sensitizes melanoma cells to apoptosis induced by topoisomerase II inhibitors. Cancer Res 62:1776–1783

    CAS  PubMed  Google Scholar 

  23. Nguyen KH, Hachem P, Khor LY, Salem N, Hunt KK, Calkins PR, Pollack A (2005) Adenoviral-E2F-1 radiosensitizes p53wild-type and p53null human prostate cancer cells. Int J Radiat Oncol Biol Phys 63:238–248

    CAS  PubMed  Google Scholar 

  24. Lee J, Park CK, Park JO, Lim T, Park YS, Lim HY, Lee I, Sohn TS, Noh JH, Heo JS, Kim S, Lim DH, Kim K-M, Kang WK (2008) Impact of E2F-1 expression on clinical outcome of gastric adenocarcinoma patients with adjuvant chemoradiation therapy. Clin Cancer Res 14:82–88

    Article  CAS  PubMed  Google Scholar 

  25. Lin WC, Lin FT, Nevins JR (2001) Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 15:1833–1844

    CAS  PubMed  Google Scholar 

  26. Stevens C, Smith L, La Thangue NB (2003) Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 5:401–409

    Article  CAS  PubMed  Google Scholar 

  27. Berkovich E, Ginsberg D (2003) ATM is a target for positive regulation by E2F-1. Oncogene 22:161–167

    Article  CAS  PubMed  Google Scholar 

  28. Powers JT, Hong S, Mayhew CN, Rogers PM, Knudsen ES, Johnson DG (2004) E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2:203–214

    CAS  PubMed  Google Scholar 

  29. Rogoff HA, Pickering MT, Debatis ME, Jones S, Kowalik TF (2002) E2F1 induces phosphorylation of p53 that is coincident with p53 accumulation and apoptosis. Mol Cell Biol 22:5308–5318

    Article  CAS  PubMed  Google Scholar 

  30. Milton AH, Khaire N, Ingram L, O’Donnell AJ, La Thangue NB (2006) 14-3-3 proteins integrate E2F activity with the DNA damage response. EMBO J 25:1046–1057

    Article  CAS  PubMed  Google Scholar 

  31. Ianari A, Gallo R, Palma M, Alesse E, Gulino A (2004) Specific role for p300/CREB-binding protein-associated factor activity in E2F1 stabilization in response to DNA damage. J Biol Chem 279:30830–30835

    Article  CAS  PubMed  Google Scholar 

  32. Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L, Porcellini A, Screpanti I, Balsano C, Alesse E, Gulino A, Levrero M (2003) Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol 5:552–558

    Article  CAS  PubMed  Google Scholar 

  33. Ozaki T, Okoshi R, Sang M, Kubo N, Nakagawara N (2009) Acetylation status of E2F-1 has an important role in the regulation of E2F-1-mediated transactivation of tumor suppressor p73. Biochem Biophys Res Com 386:2007–2211

    Article  CAS  Google Scholar 

  34. Urist M, Tanaka T, Poyurovsky MV, Prives C (2004) p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev 18:3041–3054

    Article  CAS  PubMed  Google Scholar 

  35. Yang S-Z, Lin F-T, Lin W-C (2008) MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis. EMBO Rep 9:907–915

    Google Scholar 

  36. Wolter KG, Verhaegen M, Fernandez Y, Nikolovska-Coleska Z, Riblett M, de la Vega CM, Wang S, Soengas MS (2007) Therapeutic window for melanoma treatment provided by selective effects of the proteasome on Bcl-2 proteins. Cell Death Differ 14:1605–1616

    Article  CAS  PubMed  Google Scholar 

  37. Emmrich S, Wang W, John K, Li W, Pützer BM (2009) Antisense gapmers selectively suppress individual oncogenic p73 splice isoforms and inhibit tumor growth in vivo. Mol Cancer 8:61. doi:10.1186/1476-4598-8-61

    Article  PubMed  CAS  Google Scholar 

  38. Stanelle J, Stiewe T, Theseling CC, Peter M, Putzer BM (2002) Gene expression changes in response to E2F1 activation. Nucleic Acids Res 30:1859–1867

    Article  CAS  PubMed  Google Scholar 

  39. Meyers PA, Schwartz CL, Krailo M, Kleinerman ES, Betcher D, Bernstein ML Conrad E, Ferguson W, Gebhardt M, Goorin AM, Harris MB, Healey J, Huvos A, Link M, Montebello J, Nadel H, Nieder M, Sato J, Siegal G, Weiner M, Wells R, Wold L, Womer R, Grier H (2005) Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol 23:2004–2011

    Google Scholar 

  40. Burris HA 3rd (1996) Objective outcome measures of quality of life. Oncology (Williston Park) 10:131–135

    Google Scholar 

  41. Moroni MC, Hickman ES, Lazzerini Denchi E, Caprara G, Colli E, Cecconi F, Müller H, Helin K (2001) Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 3:552–558

    Article  CAS  PubMed  Google Scholar 

  42. Muller H, Bracken AP, Vernell R, Moroni MC, Christians F, Grassilli E, Prosperini E, Vigo E, Oliner JD, Helin K (2001) E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev 15:267–285

    Article  CAS  PubMed  Google Scholar 

  43. Nowak K, Killmer K, Gessner C, Lutz W (2007) E2F-1 regulates expression of FOXO1 and FOXO3a. Biochim Biophys Acta 1769:244–252

    CAS  PubMed  Google Scholar 

  44. Radhakrishnan SK, Feliciano CS, Najmabadi F, Haegebarth A, Kandel ES, Tyner AL, Gartel AL (2004) Constitutive expression of E2F-1 leads to p21-dependent cell cycle arrest in S phase of the cell cycle. Oncogene 23:4173–4176

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Shen WH, Jin YJ, Brandt-Rauf PW, Yin Y (2007) A molecular link between E2F-1 and the MAPK cascade. J Biol Chem 282:18521–18531

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi Y, Rayman JB, Dynlacht BD (2000) Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev 14:804–816

    CAS  PubMed  Google Scholar 

  47. Graves JD, Gotoh Y, Draves KE, Ambrose D, Han DK, Wright M, Chernoff J, Clark EA, Krebs EG (1998) Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J 17:2224–2234

    Article  CAS  PubMed  Google Scholar 

  48. Hackam AS, Yassa AS, Singaraja R, Metzler M, Gutekunst CA, Gan L, Warby S, Wellington CL, Vaillancourt J, Chen N, Gervais FG, Raymond L, Nicholson DW, Hayden MR (2000) Huntingtin interacting protein 1 induces apoptosis via a novel caspase-dependent death effector domain. J Biol Chem 275:41299–41308

    Article  CAS  PubMed  Google Scholar 

  49. Jin W, Di G, Li J, Chen Y, Li W, Wu J, Cheng T, Yao M, Shao Z (2007) TIEG1 induces apoptosis through mitochondrial apoptotic pathway and promotes apoptosis induced by homoharringtonine and velcade. FEBS Lett 581:3826–3832

    Article  CAS  PubMed  Google Scholar 

  50. Fautsch MP, Vrabel A, Subramaniam M, Hefferen TE, Spelsberg TC, Wieben ED (1998) TGFbeta-inducible early gene (TIEG) also codes for early growth response alpha (EGRalpha): evidence of multiple transcripts from alternate promoters. Genomics 51:408–416

    Article  CAS  PubMed  Google Scholar 

  51. Subramaniam M, Hefferan TE, Tau K, Peus D, Pittelkow M, Jalal S, Riggs BL, Roche P, Spelsberg TC (1998) Tissue, cell type, and breast cancer stage-specific expression of a TGF-beta inducible early transcription factor gene. J Cell Biochem 68:226–236

    Article  CAS  PubMed  Google Scholar 

  52. Venuprasad K, Huang H, Harada Y, Elly C, Subramaniam M, Spelsberg T, Su J, Liu Y-T (2008) The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat Immunol 9:245–253

    Article  CAS  PubMed  Google Scholar 

  53. Hao H, Zhou HS, McMasters KM (2009) Chemosensitization of tumor cells: inactivation of nuclear factor-kappa B associated with chemosensitivity in melanoma cells after combination treatment with E2F-1 and doxorubicin. Methods Mol Biol 542:301–313

    Article  CAS  PubMed  Google Scholar 

  54. Banerjee D, Schnieders B, Fu J, Ashikari D, Zhao S-C, Bertino J (1998) Role of E2F-1 in chemosensitivity. Cancer Res 58:4292–4296

    CAS  PubMed  Google Scholar 

  55. O′Connor DJ, Lu X (2000) Stress signals induce transcriptionally inactive E2F-1 independently of p53 and RB. Oncogene 19:2369–2376

    Article  PubMed  Google Scholar 

  56. Agger K, Santoni-Rugiu E, Holmberg C, Karlström O, Helin K (2005) Conditional E2F1 activation in transgenic mice causes testicular atrophy and dysplasia mimicking human CIS. Oncogene 24:780–789

    Article  CAS  PubMed  Google Scholar 

  57. Subramaniam M, Harris SA, Oursler MJ, Rasmussen K, Riggs BL, Spelsberg TC (1995) Identification of a novel TGF-beta-regulated gene encoding a putative zinc finger protein in human osteoblasts. Nucleic Acids Res 23:4907–4912

    Article  CAS  PubMed  Google Scholar 

  58. Tachibana I, Imoto M, Adjei PN, Gores GJ, Subramaniam M, Spelsberg TC, Urrutia R (1997) Overexpression of the TGFβ-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest 99:2365–2374

    Article  CAS  PubMed  Google Scholar 

  59. Cook T, Gebelein B, Belal M, Mesa K, Urrutia R (1999) Three conserved transcriptional repressor domains are a defining feature of the TIEG subfamily of Sp1-like zinc finger proteins. J Biol Chem 274:29500–29504

    Article  CAS  PubMed  Google Scholar 

  60. Cook T, Urrutia R (2000) TIEG proteins join the Smads as TGF-b-regulated transcription factors that control pancreatic cell growth. Am J Physiol Gastrointest Liver Physiol 278:513–521

    Google Scholar 

  61. Johnsen SA, Subramaniam M, Effenberger KE, Spelsberg TC (2004) The TGF-beta inducible early gene plays a central role in the anti-proliferative response to TGFbeta. Signal Transduct 4:29–35

    Article  CAS  Google Scholar 

  62. Cao Z, Wara AK, Icli B, Sun X, Packard RRS, Esen F, Stapleton CJ, Subramaniam M, Kretschmer K, Apostolou I, von Boehmer H, Hansson GK, Spelsberg TC, Libby P, Feinberg MW (2009) Kruppel-like factor KLF10 targets TGF-β1 to regulate CD4+CD25− T cells and T regulatory cells. J Biol Chem 284:24914–24924. doi:10.1074/jbc.M109.000059

    Google Scholar 

  63. Subramaniam M, Hawse JR, Johnsen SA, Spelsberg TC (2007) Role of TIEG1 in biological processes and disease states. J Cell Biochem 102:539–548

    Article  CAS  PubMed  Google Scholar 

  64. Reinholz MM, An M-W, Johnsen SA, Subramaniam M, Suman VJ, Ingle JN, Roche PC, Spelsberg TC (2004) Differential gene expression of TGFβ inducible early gene (TIEG), Smad7, Smad2 and Bard1 in normal and malignant breast tissue. Breast Cancer Res Treatment 86:75–88

    Article  CAS  Google Scholar 

  65. Ribeiro A, Bronk SF, Roberts PJ, Urrutia R, Gores GJ (1999) The transforming growth factor b1-inducible transcription factor, TIEG1, mediates apoptosis through oxidative stress. Hepatology 30:1490–1497

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Katharina Fürst for technical assistance. We are grateful to Dr. Dirk Koczan for microarray hybridization. This work was supported by FORUN Grant 889040 from the Medical Faculty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte M. Pützer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelmann, D., Knoll, S., Ewerth, D. et al. Functional interplay between E2F1 and chemotherapeutic drugs defines immediate E2F1 target genes crucial for cancer cell death. Cell. Mol. Life Sci. 67, 931–948 (2010). https://doi.org/10.1007/s00018-009-0222-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0222-0

Keywords

Navigation