Skip to main content
Log in

Predominant regulators of tubulin monomer–polymer partitioning and their implication for cell polarization

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The microtubule-system organizes the cytoplasm during interphase and segregates condensed chromosomes during mitosis. Four unrelated conserved proteins, XMAP215/Dis1/TOGp, MCAK, MAP4 and Op18/stathmin, have all been implicated as predominant regulators of tubulin monomer–polymer partitioning in animal cells. However, while studies employing the Xenopus egg extract model system indicate that the partitioning is largely governed by the counteractive activities of XMAP215 and MCAK, studies of human cell lines indicate that MAP4 and Op18 are the predominant regulators of the interphase microtubule-array. Here, we review functional interplay of these proteins during interphase and mitosis in various cell model systems. We also review the evidence that MAP4 and Op18 have interphase-specific, counteractive and phosphorylation-inactivated activities that govern tubulin subunit partitioning in many mammalian cell types. Finally, we discuss evidence indicating that partitioning regulation by MAP4 and Op18 may be of significance to establish cell polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nogales E (2000) Structural insights into microtubule function. Annu Rev Biochem 69:277–302

    Article  PubMed  CAS  Google Scholar 

  2. Raynaud-Messina B, Merdes A (2007) Gamma–tubulin complexes and microtubule organization. Curr Opin Cell Biol 19:24–30

    Article  PubMed  CAS  Google Scholar 

  3. Wiese C, Zheng Y (2006) Microtubule nucleation: gamma-tubulin and beyond. J Cell Sci 119:4143–4153

    Article  PubMed  CAS  Google Scholar 

  4. Caviston JP, Holzbaur EL (2006) Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 16:530–537

    Article  PubMed  CAS  Google Scholar 

  5. Mellman I, Nelson WJ (2008) Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9:833–845

    Article  PubMed  CAS  Google Scholar 

  6. Li R, Gundersen GG (2008) Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol 9:860–873

    Article  PubMed  CAS  Google Scholar 

  7. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  PubMed  CAS  Google Scholar 

  8. Horio T, Hotani H (1986) Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605–607

    Article  PubMed  CAS  Google Scholar 

  9. Kirschner M, Mitchison T (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–342

    Article  PubMed  CAS  Google Scholar 

  10. Hyman AA, Salser S, Drechsel DN, Unwin N, Mitchison TJ (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol Biol Cell 3:1155–1167

    PubMed  CAS  Google Scholar 

  11. Nogales E, Whittaker M, Milligan RA, Downing KH (1999) High-resolution model of the microtubule. Cell 96:79–88

    Article  PubMed  CAS  Google Scholar 

  12. Nogales E, Wang HW (2006) Structural intermediates in microtubule assembly and disassembly: how and why? Curr Opin Cell Biol 18:179–184

    Article  PubMed  CAS  Google Scholar 

  13. Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117

    Article  PubMed  CAS  Google Scholar 

  14. Tournebize R, Popov A, Kinoshita K, Ashford AJ, Rybina S, Pozniakovsky A, Mayer TU, Walczak CE, Karsenti E, Hyman AA (2000) Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol 2:13–19

    Article  PubMed  CAS  Google Scholar 

  15. Hughes JR, Meireles AM, Fisher KH, Garcia A, Antrobus PR, Wainman A, Zitzmann N, Deane C, Ohkura H, Wakefield JG (2008) A microtubule interactome: complexes with roles in cell cycle and mitosis. PLoS Biol 6 e98

  16. Mitchison TJ, Kirschner MW (1987) Some thoughts on the partitioning of tubulin between monomer and polymer under conditions of dynamic instability. Cell Biophys 11:35–55

    PubMed  CAS  Google Scholar 

  17. Gustke N, Trinczek B, Biernat J, Mandelkow EM, Mandelkow E (1994) Domains of tau protein and interactions with microtubules. Biochemistry 33:9511–9522

    Article  PubMed  CAS  Google Scholar 

  18. Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9:309–322

    Article  PubMed  CAS  Google Scholar 

  19. Quarmby L (2000) Cellular samurai: katanin and the severing of microtubules. J Cell Sci 113(Pt 16):2821–2827

    PubMed  CAS  Google Scholar 

  20. Howard J, Hyman AA (2007) Microtubule polymerases and depolymerases. Curr Opin Cell Biol 19:31–35

    Article  PubMed  CAS  Google Scholar 

  21. Walczak CE (2000) Microtubule dynamics and tubulin interacting proteins. Curr Opin Cell Biol 12:52–56

    Article  PubMed  CAS  Google Scholar 

  22. Al-Bassam J, Larsen NA, Hyman AA, Harrison SC (2007) Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding. Structure 15:355–362

    Article  PubMed  CAS  Google Scholar 

  23. Ohkura H, Garcia MA, Toda T (2001) Dis1/TOG universal microtubule adaptors: one MAP for all? J Cell Sci 114:3805–3812

    PubMed  CAS  Google Scholar 

  24. Cassimeris L, Gard D, Tran PT, Erickson HP (2001) XMAP215 is a long thin molecule that does not increase microtubule stiffness. J Cell Sci 114:3025–3033

    PubMed  CAS  Google Scholar 

  25. Al-Bassam J, van Breugel M, Harrison SC, Hyman A (2006) Stu2p binds tubulin and undergoes an open-to-closed conformational change. J Cell Biol 172:1009–1022

    Article  PubMed  CAS  Google Scholar 

  26. Gard DL, Kirschner MW (1987) A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J Cell Biol 105:2203–2215

    Article  PubMed  CAS  Google Scholar 

  27. Kerssemakers JW, Munteanu EL, Laan L, Noetzel TL, Janson ME, Dogterom M (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442:709–712

    Article  PubMed  CAS  Google Scholar 

  28. Slep KC, Vale RD (2007) Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol Cell 27:976–991

    Article  PubMed  CAS  Google Scholar 

  29. Brouhard GJ, Stear JH, Noetzel TL, Al-Bassam J, Kinoshita K, Harrison SC, Howard J, Hyman AA (2008) XMAP215 is a processive microtubule polymerase. Cell 132:79–88

    Article  PubMed  CAS  Google Scholar 

  30. Kinoshita K, Noetzel TL, Arnal I, Drechsel DN, Hyman AA (2006) Global and local control of microtubule destabilization promoted by a catastrophe kinesin MCAK/XKCM1. J Muscle Res Cell Motil 27:107–114

    Article  PubMed  CAS  Google Scholar 

  31. Kim IG, Jun DY, Sohn U, Kim YH (1997) Cloning and expression of human mitotic centromere-associated kinesin gene. Biochim Biophys Acta 1359:181–186

    Article  PubMed  CAS  Google Scholar 

  32. Nakamura Y, Tanaka F, Haraguchi N, Mimori K, Matsumoto T, Inoue H, Yanaga K, Mori M (2007) Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer. Br J Cancer 97:543–549

    Article  PubMed  CAS  Google Scholar 

  33. Shimo A, Tanikawa C, Nishidate T, Lin ML, Matsuda K, Park JH, Ueki T, Ohta T, Hirata K, Fukuda M, Nakamura Y, Katagiri T (2008) Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis. Cancer Sci 99:62–70

    PubMed  CAS  Google Scholar 

  34. Walczak CE, Mitchison TJ, Desai A (1996) XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84:37–47

    Article  PubMed  CAS  Google Scholar 

  35. Desai A, Verma S, Mitchison TJ, Walczak CE (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96:69–78

    Article  PubMed  CAS  Google Scholar 

  36. Helenius J, Brouhard G, Kalaidzidis Y, Diez S, Howard J (2006) The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441:115–119

    Article  PubMed  CAS  Google Scholar 

  37. Wordeman L, Mitchison TJ (1995) Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol 128:95–104

    Article  PubMed  CAS  Google Scholar 

  38. Maney T, Hunter AW, Wagenbach M, Wordeman L (1998) Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J Cell Biol 142:787–801

    Article  PubMed  CAS  Google Scholar 

  39. Kline-Smith SL, Khodjakov A, Hergert P, Walczak CE (2004) Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol Biol Cell 15:1146–1159

    Article  PubMed  CAS  Google Scholar 

  40. Cassimeris L, Morabito J (2004) TOGp, the human homolog of XMAP215/Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly. Mol Biol Cell 15:1580–1590

    Article  PubMed  CAS  Google Scholar 

  41. Holmfeldt P, Stenmark S, Gullberg M (2004) Differential functional interplay of TOGp/XMAP215 and the KinI kinesin MCAK during interphase and mitosis. EMBO J 23:627–637

    Article  PubMed  CAS  Google Scholar 

  42. Ganem NJ, Upton K, Compton DA (2005) Efficient mitosis in human cells lacking poleward microtubule flux. Curr Biol 15:1827–1832

    Article  PubMed  CAS  Google Scholar 

  43. Walczak CE, Gan EC, Desai A, Mitchison TJ, Kline-Smith SL (2002) The microtubule-destabilizing kinesin XKCM1 is required for chromosome positioning during spindle assembly. Curr Biol 12:1885–1889

    Article  PubMed  CAS  Google Scholar 

  44. Andrews PD, Ovechkina Y, Morrice N, Wagenbach M, Duncan K, Wordeman L, Swedlow JR (2004) Aurora B regulates MCAK at the mitotic centromere. Dev Cell 6:253–268

    Article  PubMed  CAS  Google Scholar 

  45. Lan W, Zhang X, Kline-Smith SL, Rosasco SE, Barrett-Wilt GA, Shabanowitz J, Hunt DF, Walczak CE, Stukenberg PT (2004) Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol 14:273–286

    PubMed  CAS  Google Scholar 

  46. Walczak CE, Heald R (2008) Mechanisms of mitotic spindle assembly and function. Int Rev Cytol 265:111–158

    Article  PubMed  CAS  Google Scholar 

  47. Wilde A, Zheng Y (1999) Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284:1359–1362

    Article  PubMed  CAS  Google Scholar 

  48. Kinoshita K, Habermann B, Hyman AA (2002) XMAP215: a key component of the dynamic microtubule cytoskeleton. Trends Cell Biol 12:267–273

    Article  PubMed  CAS  Google Scholar 

  49. Vasquez RJ, Gard DL, Cassimeris L (1999) Phosphorylation by CDK1 regulates XMAP215 function in vitro. Cell Motil Cytoskeleton 43:310–321

    Article  PubMed  CAS  Google Scholar 

  50. Alberts B (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  51. Lodish HF (2008) Molecular cell biology, 6th edn. Freeman, New York

    Google Scholar 

  52. Gergely F, Draviam VM, Raff JW (2003) The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev 17:336–341

    Article  PubMed  CAS  Google Scholar 

  53. Kline-Smith SL, Walczak CE (2002) The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells. Mol Biol Cell 13:2718–2731

    Article  PubMed  CAS  Google Scholar 

  54. Shirasu-Hiza M, Coughlin P, Mitchison T (2003) Identification of XMAP215 as a microtubule-destabilizing factor in Xenopus egg extract by biochemical purification. J Cell Biol 161:349–358

    Article  PubMed  CAS  Google Scholar 

  55. van Breugel M, Drechsel D, Hyman A (2003) Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end-binding microtubule destabilizer. J Cell Biol 161:359–369

    Article  PubMed  CAS  Google Scholar 

  56. Mandelkow E, Mandelkow EM (1995) Microtubules and microtubule-associated proteins. Curr Opin Cell Biol 7:72–81

    Article  PubMed  CAS  Google Scholar 

  57. Andersen SS (2000) Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends Cell Biol 10:261–267

    Article  PubMed  CAS  Google Scholar 

  58. Chapin SJ, Lue CM, Yu MT, Bulinski JC (1995) Differential expression of alternatively spliced forms of MAP4: a repertoire of structurally different microtubule-binding domains. Biochemistry 34:2289–2301

    Article  PubMed  CAS  Google Scholar 

  59. Murphy M, Hinman A, Levine AJ (1996) Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev 10:2971–2980

    Article  PubMed  CAS  Google Scholar 

  60. Ookata K, Hisanaga S, Bulinski JC, Murofushi H, Aizawa H, Itoh TJ, Hotani H, Okumura E, Tachibana K, Kishimoto T (1995) Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. J Cell Biol 128:849–862

    Article  PubMed  CAS  Google Scholar 

  61. McNally KP, Buster D, McNally FJ (2002) Katanin-mediated microtubule severing can be regulated by multiple mechanisms. Cell Motil Cytoskeleton 53:337–349

    Article  PubMed  CAS  Google Scholar 

  62. Bulinski JC, McGraw TE, Gruber D, Nguyen HL, Sheetz MP (1997) Overexpression of MAP4 inhibits organelle motility and trafficking in vivo. J Cell Sci 110(Pt 24):3055–3064

    PubMed  CAS  Google Scholar 

  63. Scholz D, McDermott P, Garnovskaya M, Gallien TN, Huettelmaier S, DeRienzo C, Cooper Gt (2006) Microtubule-associated protein-4 (MAP-4) inhibits microtubule-dependent distribution of mRNA in isolated neonatal cardiocytes. Cardiovasc Res 71:506–516

    Article  PubMed  CAS  Google Scholar 

  64. Cha BJ, Error B, Gard DL (1998) XMAP230 is required for the assembly and organization of acetylated microtubules and spindles in Xenopus oocytes and eggs. J Cell Sci 111(Pt 16):2315–2327

    PubMed  CAS  Google Scholar 

  65. Cha B, Cassimeris L, Gard DL (1999) XMAP230 is required for normal spindle assembly in vivo and in vitro. J Cell Sci 112(Pt 23):4337–4346

    PubMed  CAS  Google Scholar 

  66. Wang XM, Peloquin JG, Zhai Y, Bulinski JC, Borisy GG (1996) Removal of MAP4 from microtubules in vivo produces no observable phenotype at the cellular level. J Cell Biol 132:345–357

    Article  PubMed  CAS  Google Scholar 

  67. Nguyen HL, Gruber D, Bulinski JC (1999) Microtubule-associated protein 4 (MAP4) regulates assembly, protomer-polymer partitioning and synthesis of tubulin in cultured cells. J Cell Sci 112(Pt 12):1813–1824

    PubMed  CAS  Google Scholar 

  68. Holmfeldt P, Stenmark S, Gullberg M (2007) Interphase-specific phosphorylation-mediated regulation of tubulin dimer partitioning in human cells. Mol Biol Cell 18:1909–1917

    Article  PubMed  CAS  Google Scholar 

  69. Hurov J, Piwnica-Worms H (2007) The Par-1/MARK family of protein kinases: from polarity to metabolism. Cell Cycle 6:1966–1969

    PubMed  CAS  Google Scholar 

  70. Drewes G, Ebneth A, Mandelkow EM (1998) MAPs, MARKs and microtubule dynamics. Trends Biochem Sci 23:307–311

    Article  PubMed  CAS  Google Scholar 

  71. Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E (1997) MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89:297–308

    Article  PubMed  CAS  Google Scholar 

  72. Ebneth A, Drewes G, Mandelkow EM, Mandelkow E (1999) Phosphorylation of MAP2c and MAP4 by MARK kinases leads to the destabilization of microtubules in cells. Cell Motil Cytoskeleton 44:209–224

    Article  PubMed  CAS  Google Scholar 

  73. Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Makela TP, Hardie DG, Alessi DR (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23:833–843

    Article  PubMed  CAS  Google Scholar 

  74. Hezel AF, Bardeesy N (2008) LKB1; linking cell structure and tumor suppression. Oncogene 27:6908–6919

    Article  PubMed  CAS  Google Scholar 

  75. Ookata K, Hisanaga S, Sugita M, Okuyama A, Murofushi H, Kitazawa H, Chari S, Bulinski JC, Kishimoto T (1997) MAP4 is the in vivo substrate for CDC2 kinase in HeLa cells: identification of an M-phase specific and a cell cycle-independent phosphorylation site in MAP4. Biochemistry 36:15873–15883

    Article  PubMed  CAS  Google Scholar 

  76. Shiina N, Tsukita S (1999) Mutations at phosphorylation sites of Xenopus microtubule-associated protein 4 affect its microtubule-binding ability and chromosome movement during mitosis. Mol Biol Cell 10:597–608

    PubMed  CAS  Google Scholar 

  77. Weirich CS, Erzberger JP, Barral Y (2008) The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9:478–489

    Article  PubMed  CAS  Google Scholar 

  78. Kremer BE, Haystead T, Macara IG (2005) Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol Biol Cell 16:4648–4659

    Article  PubMed  CAS  Google Scholar 

  79. Spiliotis ET, Hunt SJ, Hu Q, Kinoshita M, Nelson WJ (2008) Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules. J Cell Biol 180:295–303

    Article  PubMed  CAS  Google Scholar 

  80. Holmfeldt P, Zhang X, Stenmark S, Walczak CE, Gullberg M (2005) CaMKIIgamma-mediated inactivation of the Kin I kinesin MCAK is essential for bipolar spindle formation. EMBO J 24:1256–1266

    Article  PubMed  CAS  Google Scholar 

  81. Sobel A (1991) Stathmin: a relay phosphoprotein for multiple signal transduction? Trends Biochem Sci 16:301–305

    Article  PubMed  CAS  Google Scholar 

  82. Koppel J, Boutterin MC, Doye V, Peyro-Saint-Paul H, Sobel A (1990) Developmental tissue expression and phylogenetic conservation of stathmin, a phosphoprotein associated with cell regulations. J Biol Chem 265:3703–3707

    PubMed  CAS  Google Scholar 

  83. Ozon S, Guichet A, Gavet O, Roth S, Sobel A (2002) Drosophila stathmin: a microtubule-destabilizing factor involved in nervous system formation. Mol Biol Cell 13:698–710

    Article  PubMed  CAS  Google Scholar 

  84. Belmont LD, Mitchison TJ (1996) Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84:623–631

    Article  PubMed  CAS  Google Scholar 

  85. Marklund U, Larsson N, Gradin HM, Brattsand G, Gullberg M (1996) Oncoprotein 18 is a phosphorylation-responsive regulator of microtubule dynamics. EMBO J 15:5290–5298

    PubMed  CAS  Google Scholar 

  86. Jourdain L, Curmi P, Sobel A, Pantaloni D, Carlier MF (1997) Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules. Biochemistry 36:10817–10821

    Article  PubMed  CAS  Google Scholar 

  87. Steinmetz MO, Kammerer RA, Jahnke W, Goldie KN, Lustig A, van Oostrum J (2000) Op18/stathmin caps a kinked protofilament-like tubulin tetramer. EMBO J 19:572–580

    Article  PubMed  CAS  Google Scholar 

  88. Gigant B, Curmi PA, Martin-Barbey C, Charbaut E, Lachkar S, Lebeau L, Siavoshian S, Sobel A, Knossow M (2000) The 4 A X-ray structure of a tubulin:stathmin-like domain complex. Cell 102:809–816

    Article  PubMed  CAS  Google Scholar 

  89. Curmi PA, Andersen SS, Lachkar S, Gavet O, Karsenti E, Knossow M, Sobel A (1997) The stathmin/tubulin interaction in vitro. J Biol Chem 272:25029–25036

    Article  PubMed  CAS  Google Scholar 

  90. Howell B, Larsson N, Gullberg M, Cassimeris L (1999) Dissociation of the tubulin-sequestering and microtubule catastrophe-promoting activities of oncoprotein 18/stathmin. Mol Biol Cell 10:105–118

    PubMed  CAS  Google Scholar 

  91. Wittmann T, Bokoch GM, Waterman-Storer CM (2004) Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1. J Biol Chem 279:6196–6203

    Article  PubMed  CAS  Google Scholar 

  92. Manna T, Thrower D, Miller HP, Curmi P, Wilson L (2006) Stathmin strongly increases the minus end catastrophe frequency and induces rapid treadmilling of bovine brain microtubules at steady state in vitro. J Biol Chem 281:2071–2078

    Article  PubMed  CAS  Google Scholar 

  93. Cassimeris L (2002) The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 14:18–24

    Article  PubMed  CAS  Google Scholar 

  94. Howell B, Deacon H, Cassimeris L (1999) Decreasing oncoprotein 18/stathmin levels reduces microtubule catastrophes and increases microtubule polymer in vivo. J Cell Sci 112(Pt 21):3713–3722

    PubMed  CAS  Google Scholar 

  95. Ringhoff DN Cassimeris L (2009) Stathmin regulates centrosomal nucleation of microtubules and tubulin dimer/polymer partitioning. Mol Biol Cell (in press)

  96. Cleveland DW (1988) Autoregulated instability of tubulin mRNAs: a novel eukaryotic regulatory mechanism. Trends Biochem Sci 13:339–343

    Article  PubMed  CAS  Google Scholar 

  97. Fletcher G, Rorth P (2007) Drosophila stathmin is required to maintain tubulin pools. Curr Biol 17:1067–1071

    Article  PubMed  CAS  Google Scholar 

  98. Sellin ME, Holmfeldt P, Stenmark S, Gullberg M (2008) Global regulation of the interphase microtubule system by abundantly expressed op18/stathmin. Mol Biol Cell 19:2897–2906

    Article  PubMed  CAS  Google Scholar 

  99. Borghese L, Fletcher G, Mathieu J, Atzberger A, Eades WC, Cagan RL, Rorth P (2006) Systematic analysis of the transcriptional switch inducing migration of border cells. Dev Cell 10:497–508

    Article  PubMed  CAS  Google Scholar 

  100. Schubart UK, Yu J, Amat JA, Wang Z, Hoffmann MK, Edelmann W (1996) Normal development of mice lacking metablastin (P19), a phosphoprotein implicated in cell cycle regulation. J Biol Chem 271:14062–14066

    Article  PubMed  CAS  Google Scholar 

  101. Liedtke W, Leman EE, Fyffe RE, Raine CS, Schubart UK (2002) Stathmin-deficient mice develop an age-dependent axonopathy of the central and peripheral nervous systems. Am J Pathol 160:469–480

    PubMed  CAS  Google Scholar 

  102. Shumyatsky GP, Malleret G, Shin RM, Takizawa S, Tully K, Tsvetkov E, Zakharenko SS, Joseph J, Vronskaya S, Yin D, Schubart UK, Kandel ER, Bolshakov VY (2005) Stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell 123:697–709

    Article  PubMed  CAS  Google Scholar 

  103. Baldassarre G, Belletti B, Nicoloso MS, Schiappacassi M, Vecchione A, Spessotto P, Morrione A, Canzonieri V, Colombatti A (2005) p27(Kip1)–stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 7:51–63

    Article  PubMed  CAS  Google Scholar 

  104. Belletti B, Nicoloso MS, Schiappacassi M, Berton S, Lovat F, Wolf K, Canzonieri V, D’Andrea S, Zucchetto A, Friedl P, Colombatti A, Baldassarre G (2008) Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Mol Biol Cell 19:2003–2013

    Article  PubMed  CAS  Google Scholar 

  105. Langenickel TH, Olive M, Boehm M, San H, Crook MF, Nabel EG (2008) KIS protects against adverse vascular remodeling by opposing stathmin-mediated VSMC migration in mice. J Clin Invest 118:3848–3859

    Article  PubMed  CAS  Google Scholar 

  106. Ng DC, Lin BH, Lim CP, Huang G, Zhang T, Poli V, Cao X (2006) Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J Cell Biol 172:245–257

    Article  PubMed  CAS  Google Scholar 

  107. Verma NK, Dourlat J, Davies AM, Long A, Liu WQ, Garbay C, Kelleher D, Volkov Y (2009) STAT3–stathmin interactions control microtubule dynamics in migrating T-cells. J Biol Chem 284:12349–12362

    Article  PubMed  CAS  Google Scholar 

  108. Singer S, Malz M, Herpel E, Warth A, Bissinger M, Keith M, Muley T, Meister M, Hoffmann H, Penzel R, Gdynia G, Ehemann V, Schnabel PA, Kuner R, Huber P, Schirmacher P, Breuhahn K (2009) Coordinated expression of stathmin family members by far upstream sequence element-binding protein-1 increases motility in non-small cell lung cancer. Cancer Res 69:2234–2243

    Article  PubMed  CAS  Google Scholar 

  109. Ozon S, Maucuer A, Sobel A (1997) The stathmin family–molecular and biological characterization of novel mammalian proteins expressed in the nervous system. Eur J Biochem 248:794–806

    Article  PubMed  CAS  Google Scholar 

  110. Curmi PA, Gavet O, Charbaut E, Ozon S, Lachkar-Colmerauer S, Manceau V, Siavoshian S, Maucuer A, Sobel A (1999) Stathmin and its phosphoprotein family: general properties, biochemical and functional interaction with tubulin. Cell Struct Funct 24:345–357

    Article  PubMed  CAS  Google Scholar 

  111. Bieche I, Maucuer A, Laurendeau I, Lachkar S, Spano AJ, Frankfurter A, Levy P, Manceau V, Sobel A, Vidaud M, Curmi PA (2003) Expression of stathmin family genes in human tissues: non-neural-restricted expression for SCLIP. Genomics 81:400–410

    Article  PubMed  CAS  Google Scholar 

  112. Larsson N, Melander H, Marklund U, Osterman O, Gullberg M (1995) G2/M transition requires multisite phosphorylation of oncoprotein 18 by two distinct protein kinase systems. J Biol Chem 270:14175–14183

    Article  PubMed  CAS  Google Scholar 

  113. Larsson N, Marklund U, Gradin HM, Brattsand G, Gullberg M (1997) Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis. Mol Cell Biol 17:5530–5539

    PubMed  CAS  Google Scholar 

  114. Gadea BB, Ruderman JV (2006) Aurora B is required for mitotic chromatin-induced phosphorylation of Op18/Stathmin. Proc Natl Acad Sci USA 103:4493–4498

    Article  PubMed  CAS  Google Scholar 

  115. Budde PP, Kumagai A, Dunphy WG, Heald R (2001) Regulation of Op18 during spindle assembly in Xenopus egg extracts. J Cell Biol 153:149–158

    Article  PubMed  CAS  Google Scholar 

  116. Brattsand G, Marklund U, Nylander K, Roos G, Gullberg M (1994) Cell-cycle-regulated phosphorylation of oncoprotein 18 on Ser16, Ser25 and Ser38. Eur J Biochem 220:359–368

    Article  PubMed  CAS  Google Scholar 

  117. Holmfeldt P, Brannstrom K, Stenmark S, Gullberg M (2006) Aneugenic activity of Op18/stathmin is potentiated by the somatic Q18–>e mutation in leukemic cells. Mol Biol Cell 17:2921–2930

    Article  PubMed  CAS  Google Scholar 

  118. Andersen SS, Ashford AJ, Tournebize R, Gavet O, Sobel A, Hyman AA, Karsenti E (1997) Mitotic chromatin regulates phosphorylation of Stathmin/Op18. Nature 389:640–643

    Article  PubMed  CAS  Google Scholar 

  119. Tournebize R, Andersen SS, Verde F, Doree M, Karsenti E, Hyman AA (1997) Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. EMBO J 16:5537–5549

    Article  PubMed  CAS  Google Scholar 

  120. Niethammer P, Bastiaens P, Karsenti E (2004) Stathmin–tubulin interaction gradients in motile and mitotic cells. Science 303:1862–1866

    Article  PubMed  CAS  Google Scholar 

  121. Lawler S (1998) Microtubule dynamics: if you need a shrink try stathmin/Op18. Curr Biol 8:R212–R214

    Article  PubMed  CAS  Google Scholar 

  122. Melander Gradin H, Marklund U, Larsson N, Chatila TA, Gullberg M (1997) Regulation of microtubule dynamics by Ca2+/calmodulin-dependent kinase IV/Gr-dependent phosphorylation of oncoprotein 18. Mol Cell Biol 17:3459–3467

    PubMed  CAS  Google Scholar 

  123. Gradin HM, Larsson N, Marklund U, Gullberg M (1998) Regulation of microtubule dynamics by extracellular signals: cAMP-dependent protein kinase switches off the activity of oncoprotein 18 in intact cells. J Cell Biol 140:131–141

    Article  PubMed  CAS  Google Scholar 

  124. Antonsson B, Kassel DB, Ruchti E, Grenningloh G (2001) Differences in phosphorylation of human and chicken stathmin by MAP kinase. J Cell Biochem 80:346–352

    Article  PubMed  CAS  Google Scholar 

  125. Daub H, Gevaert K, Vandekerckhove J, Sobel A, Hall A (2001) Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J Biol Chem 276:1677–1680

    Article  PubMed  CAS  Google Scholar 

  126. Watabe-Uchida M, John KA, Janas JA, Newey SE, Van Aelst L (2006) The Rac activator DOCK7 regulates neuronal polarity through local phosphorylation of stathmin/Op18. Neuron 51:727–739

    Article  PubMed  CAS  Google Scholar 

  127. Tanaka Y, Hamano S, Gotoh K, Murata Y, Kunisaki Y, Nishikimi A, Takii R, Kawaguchi M, Inayoshi A, Masuko S, Himeno K, Sasazuki T, Fukui Y (2007) T helper type 2 differentiation and intracellular trafficking of the interleukin 4 receptor-alpha subunit controlled by the Rac activator Dock2. Nat Immunol 8:1067–1075

    Article  PubMed  CAS  Google Scholar 

  128. Small JV, Rottner K, Kaverina I (1999) Functional design in the actin cytoskeleton. Curr Opin Cell Biol 11:54–60

    Article  PubMed  CAS  Google Scholar 

  129. Marklund U, Brattsand G, Shingler V, Gullberg M (1993) Serine 25 of oncoprotein 18 is a major cytosolic target for the mitogen-activated protein kinase. J Biol Chem 268:15039–15047

    PubMed  CAS  Google Scholar 

  130. Marklund U, Larsson N, Brattsand G, Osterman O, Chatila TA, Gullberg M (1994) Serine 16 of oncoprotein 18 is a major cytosolic target for the Ca2+/calmodulin-dependent kinase-Gr. Eur J Biochem 225:53–60

    Article  PubMed  CAS  Google Scholar 

  131. Cantrell DA (2002) T-cell antigen receptor signal transduction. Immunology 105:369–374

    Article  PubMed  CAS  Google Scholar 

  132. Gomez TS, Billadeau DD (2008) T cell activation and the cytoskeleton: you can’t have one without the other. Adv Immunol 97:1–64

    Article  PubMed  CAS  Google Scholar 

  133. Huse M, Quann EJ, Davis MM (2008) Shouts, whispers and the kiss of death: directional secretion in T cells. Nat Immunol 9:1105–1111

    Article  PubMed  CAS  Google Scholar 

  134. Combs J, Kim SJ, Tan S, Ligon LA, Holzbaur EL, Kuhn J, Poenie M (2006) Recruitment of dynein to the Jurkat immunological synapse. Proc Natl Acad Sci USA 103:14883–14888

    Article  PubMed  CAS  Google Scholar 

  135. Stowers L, Yelon D, Berg LJ, Chant J (1995) Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc Natl Acad Sci USA 92:5027–5031

    Article  PubMed  CAS  Google Scholar 

  136. Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106:489–498

    Article  PubMed  CAS  Google Scholar 

  137. Mori N, Morii H (2002) SCG10-related neuronal growth-associated proteins in neural development, plasticity, degeneration, and aging. J Neurosci Res 70:264–273

    Article  PubMed  CAS  Google Scholar 

  138. Srsen V, Kitazawa H, Sugita M, Murofushi H, Bulinski JC, Kishimoto T, Hisanaga S (1999) Serum-dependent phosphorylation of human MAP4 at Ser696 in cultured mammalian cells. Cell Struct Funct 24:321–327

    Article  PubMed  CAS  Google Scholar 

  139. Guo S, Kemphues KJ (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611–620

    Article  PubMed  CAS  Google Scholar 

  140. Bohm H, Brinkmann V, Drab M, Henske A, Kurzchalia TV (1997) Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity. Curr Biol 7:603–606

    Article  PubMed  CAS  Google Scholar 

  141. Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, Lu H, Ohnishi N, Azuma T, Suzuki A, Ohno S, Hatakeyama M (2007) Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447:330–333

    Article  PubMed  CAS  Google Scholar 

  142. Bulinski JC, Borisy GG (1980) Widespread distribution of a 210, 000 mol wt microtubule-associated protein in cells and tissues of primates. J Cell Biol 87:802–808

    Article  PubMed  CAS  Google Scholar 

  143. Heald R (2000) A dynamic duo of microtubule modulators. Nat Cell Biol 2:E11–E12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are supported by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Holmfeldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmfeldt, P., Sellin, M.E. & Gullberg, M. Predominant regulators of tubulin monomer–polymer partitioning and their implication for cell polarization. Cell. Mol. Life Sci. 66, 3263–3276 (2009). https://doi.org/10.1007/s00018-009-0084-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0084-5

Keywords

Navigation