Skip to main content
Log in

Complex Boosts: A Hermitian Clifford Algebra Approach

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The aim of this paper is to study complex boosts in complex Minkowski space-time that preserves the Hermitian norm. Starting from the spin group Spin\({^+(2n, 2m, \mathbb{R})}\) in the real Minkowski space \({\mathbb{R}^{2n,2m}}\) we construct a Clifford realization of the pseudo-unitary group U(n,m) using the space-time Witt basis in the framework of Hermitian Clifford algebra. Restricting to the case of one complex time direction we derive a general formula for a complex boost in an arbitrary complex direction and its KAK-decomposition, generalizing the well-known formula of a real boost in an arbitrary real direction. In the end we derive the complex Einstein velocity addition law for complex relativistic velocities, by the projective model of hyperbolic n-space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barut A.: Complex Lorentz group with real metric: Group structure. J. Math. Phys. 5, 1562–1656 (1964)

    Article  MathSciNet  Google Scholar 

  2. Brackx F., Bureš J., De Schepper H., Eelbode D., Sommen F., Souček V.: Fundaments of Hermitean Clifford Analysis Part I: Complex Structure. Compl. Anal. Oper. Theory 1, 341–365 (2007)

    Article  MATH  Google Scholar 

  3. Brackx F., Bureš J., De Schepper H., Eelbode D., Sommen F., Souček V.: Fundaments of Hermitean Clifford Analysis II: splitting of h-monogenic equations. Complex Var. Elliptic Equ. 52, 1063–1079 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Brackx, R. Delanghe and F. Sommen, Clifford analysis. Research Notes in Mathematics vol. 76, MA: Pitman Publishers, Boston, 1982.

  5. Brackx F., De Schepper H., Sommen F.: The Hermitian Clifford analysis toolbox. Adv. appl. Clifford alg. 18, 45–487 (2008)

    Article  MathSciNet  Google Scholar 

  6. R. Delanghe, F. Sommen and V. Souček V, Clifford algebra and spinor valued functions - a function theory for the Dirac operator. Mathematics and its Applications vol. 53, Kluwer, Dordrecht, 1992.

  7. Doran C. C, Lasenby A. A: Geometric Algebra for Physicists. Cambridge university Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  8. Doran C., Hestenes D., Sommen F.: Lie groups as spin groups. J. Math.Phys. 34((8), 3642–3669 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. D. Eelbode, Clifford analysis on the hyperbolic unit ball. PhD. Thesis University of Ghent, Belgium, 2004.

  10. Ferreira M.: Spherical continuous wavelet transforms arising from sections of the Lorentz group. Appl. Comput. Harmon. Anal. 26, 212–229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Ferreira, Gyrogroups in Projective Hyperbolic Clifford Analysis. I. Sabadini and F. Sommen (eds.), Hypercomplex Analysis and Applications - Trends in Mathematics, Springer, Basel (2010), 61–80.

  12. Gilbert J., Murray M.: Clifford Algebra and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  13. G. Kaiser, Quantum Physics, Relativity, and Complex Space-time: Towards a New Synthesis. North-Holland, Amsterdam, 1990.

  14. Kaiser G.: Physycal wavelets and their sources: real physics in complex spacetime. J. Phys. A: Math. Gen. 36, 291–338 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Kaiser and T. Hansen, Generalized Huygens principle with pulsed-beam wavelets. J. Phys. A: Math. Theor. 42 (2009), 475403.

    Google Scholar 

  16. Rudin W.: Function theory in the unit ball of Cn. Springer-Verlag, New York (1980)

    Book  Google Scholar 

  17. Sabadini I., Sommen F.: Hermitian Clifford analysis and resolutions. Math. Meth. Appl. Sci. 25((16-18), 451–487 (2002)

    MathSciNet  Google Scholar 

  18. Smith J., Ungar A. A.: Abstract space–times and their Lorentz groups. J. Math. Phys. 37((6), 3073–3098 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Tarakanov A. N.: Real and complex “boosts” in arbitrary pseudo-Euclidean spaces. Theoret. and Math. Phys. 28((3), 838–842 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  20. Ungar A. A.: The relativistic velocity composition paradox and the Thomas rotation. Found. Phys. 19, 1385–1396 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  21. Ungar A. A.: The abstract Lorentz transformatin group. Am. J. Phys. 60, 815–828 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Ungar A. A.: The abstract complex Lorentz transformation group with real metric. I. Special relativity formalism to deal with holomorphic automorphism group of the unit ball in any complex Hilbert space. J. Math. Phys. 35((3), 1408–1426 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Ungar A. A.: The abstract complex Lorentz transformation group with real metric. II. The invariance group of the form \({\| t \|^{2} - \| x \|^{2}}\) . J. Math. Phys. 35((4), 1881–1913 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A. A. Ungar, Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics. Found. Phys., vol. 27, no. 6 (1997), 881–951.

  25. A. A. Ungar, Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces. Dordrecht:Kluwer Acad. Publ., 2001.

  26. Ungar A. A.: Analytic Hyperbolic Geometry - Mathematical Foundations and Applications. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, M., Sommen, F. Complex Boosts: A Hermitian Clifford Algebra Approach. Adv. Appl. Clifford Algebras 23, 339–362 (2013). https://doi.org/10.1007/s00006-012-0377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-012-0377-x

Keywords

Navigation