Skip to main content
Log in

QCD thermodynamics with continuum extrapolated Wilson fermions I

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

QCD thermodynamics is considered using Wilson fermions in the fixed scale approach. The temperature dependence of the renormalized chiral condensate, quark number susceptibility and Polyakov loop is measured at four lattice spacings allowing for a controlled continuum limit. The light quark masses are fixed to heavier than physical values in this first study. Finite volume effects are ensured to be negligible by using approriately large box sizes. The final continuum results are compared with staggered fermion simulations performed in the fixed N t approach. The same continuum renormalization conditions are used in both approaches and the final results agree perfectly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Aoki, G. Endrodi, Z. Fodor, S. Katz and K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].

    Article  ADS  Google Scholar 

  2. D.J. Schwarz, The first second of the universe, Annalen Phys. 12 (2003) 220 [astro-ph/0303574] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. Z. Fodor and S. Katz, The phase diagram of quantum chromodynamics, arXiv:0908.3341 [INSPIRE].

  4. G. Endrodi, Z. Fodor, S. Katz and K. Szabo, The QCD phase diagram at nonzero quark density, JHEP 04 (2011) 001 [arXiv:1102.1356] [INSPIRE].

    Article  ADS  Google Scholar 

  5. P. de Forcrand, S. Kim and O. Philipsen, A QCD chiral critical point at small chemical potential: is it there or not?, PoS(LATTICE 2007)178 [arXiv:0711.0262] [INSPIRE].

  6. G. Endrodi, Z. Fodor, S. Katz and K. Szabo, The nature of the finite temperature QCD transition as a function of the quark masses, PoS(LATTICE 2007)182 [arXiv:0710.0998] [INSPIRE].

  7. F. Karsch, E. Laermann and C. Schmidt, The chiral critical point in three-flavor QCD, Phys. Lett. B 520 (2001) 41 [hep-lat/0107020] [INSPIRE].

    Article  ADS  Google Scholar 

  8. Y. Aoki, Z. Fodor, S. Katz and K. Szabo, The QCD transition temperature: results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [INSPIRE].

    Article  ADS  Google Scholar 

  9. Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP 06 (2009) 088 [arXiv:0903.4155] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].

    ADS  Google Scholar 

  11. S. Borsányi et al., Fluctuations of conserved charges at finite temperature from lattice QCD, JHEP 01 (2012) 138 [arXiv:1112.4416] [INSPIRE].

    Article  ADS  Google Scholar 

  12. Z. Fodor and S. Katz, A new method to study lattice QCD at finite temperature and chemical potential, Phys. Lett. B 534 (2002) 87 [hep-lat/0104001] [INSPIRE].

    Article  ADS  Google Scholar 

  13. Z. Fodor and S. Katz, Critical point of QCD at finite T and μ, lattice results for physical quark masses, JHEP 04 (2004) 050 [hep-lat/0402006] [INSPIRE].

    Article  ADS  Google Scholar 

  14. T. Umeda et al., Fixed scale approach to equation of state in lattice QCD, Phys. Rev. D 79 (2009) 051501 [arXiv:0809.2842] [INSPIRE].

    ADS  Google Scholar 

  15. WHOT-QCD collaboration, S. Ejiri et al., Equation of state and heavy-quark free energy at finite temperature and density in two flavor lattice QCD with wilson quark action, Phys. Rev. D 82 (2010) 014508 [arXiv:0909.2121] [INSPIRE].

    ADS  Google Scholar 

  16. WHOT-QCD collaboration, Y. Maezawa et al., Free energies of heavy quarks in full-QCD lattice simulations with Wilson-type quark action, Nucl. Phys. A 830 (2009) 247C-250C [arXiv:0907.4203] [INSPIRE].

    Article  ADS  Google Scholar 

  17. V. Bornyakov et al., Probing the finite temperature phase transition with N f = 2 nonperturbatively improved Wilson fermions, Phys. Rev. D 82 (2010) 014504 [arXiv:0910.2392] [INSPIRE].

    ADS  Google Scholar 

  18. WHOT-QCD collaboration, T. Umeda et al., EOS in 2 + 1 flavor QCD with improved Wilson quarks by the fixed-scale approach, PoS(LATTICE 2010)218 [arXiv:1011.2548] [INSPIRE].

  19. Y. Maezawa et al., Application of fixed scale approach to static quark free energies in quenched and 2 + 1 flavor lattice QCD with improved Wilson quark action, arXiv:1112.2756 [INSPIRE].

  20. WHOT-QCD collaboration, T. Umeda et al., Equation of state in 2 + 1 flavor QCD with improved Wilson quarks by the fixed scale approach, Phys. Rev. D 85 (2012) 094508 [arXiv:1202.4719] [INSPIRE].

    ADS  Google Scholar 

  21. S. Dürr et al., Scaling study of dynamical smeared-link clover fermions, Phys. Rev. D 79 (2009) 014501 [arXiv:0802.2706] [INSPIRE].

    ADS  Google Scholar 

  22. K. Symanzik, Continuum limit and improved action in lattice theories. 1. Principles and ϕ 4 theory, Nucl. Phys. B 226 (1983) 187 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Lüscher and P. Weisz, On-shell improved lattice gauge theories, Commun. Math. Phys. 97 (1985) 59 [Erratum ibid. 98 (1985) 433] [INSPIRE].

    Google Scholar 

  24. B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for QCD with Wilson fermions, Nucl. Phys. B 259 (1985) 572 [INSPIRE].

    Article  ADS  Google Scholar 

  25. C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [INSPIRE].

    ADS  Google Scholar 

  26. R. Hoffmann, A. Hasenfratz and S. Schaefer, Non-perturbative improvement of nHYP smeared Wilson fermions, PoS(LATTICE 2007)104 [arXiv:0710.0471] [INSPIRE].

  27. S. Capitani, S. Dürr and C. Hölbling, Rationale for UV-filtered clover fermions, JHEP 11 (2006) 028 [hep-lat/0607006] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. Duane, A. Kennedy, B. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216 [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Clark and A. Kennedy, Accelerating dynamical fermion computations using the rational hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys. Rev. Lett. 98 (2007) 051601 [hep-lat/0608015] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Sexton and D. Weingarten, Hamiltonian evolution for the hybrid Monte Carlo algorithm, Nucl. Phys. B 380 (1992) 665 [INSPIRE].

    Article  ADS  Google Scholar 

  31. T. Takaishi and P. de Forcrand, Testing and tuning new symplectic integrators for hybrid Monte Carlo algorithm in lattice QCD, Phys. Rev. E 73 (2006) 036706 [hep-lat/0505020] [INSPIRE].

    ADS  Google Scholar 

  32. T.A. DeGrand, A conditioning technique for matrix inversion for Wilson fermions, Comput. Phys. Commun. 52 (1988) 161 [INSPIRE].

    Article  ADS  Google Scholar 

  33. Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S. Borsányi et al., High-precision scale setting in lattice QCD, arXiv:1203.4469 [INSPIRE].

  36. L. Giusti, F. Rapuano, M. Talevi and A. Vladikas, The QCD chiral condensate from the lattice, Nucl. Phys. B 538 (1999) 249 [hep-lat/9807014] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Bochicchio, L. Maiani, G. Martinelli, G.C. Rossi and M. Testa, Chiral symmetry on the lattice with Wilson fermions, Nucl. Phys. B 262 (1985) 331 [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Borsányi et al., QCD thermodynamics with Wilson fermions, PoS(LATTICE 2011)209 [arXiv:1111.3500] [INSPIRE].

  39. S. Dürr et al., Lattice QCD at the physical point: light quark masses, Phys. Lett. B 701 (2011) 265 [arXiv:1011.2403] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Dürr et al., Lattice QCD at the physical point: simulation and analysis details, JHEP 08 (2011) 148 [arXiv:1011.2711] [INSPIRE].

    Article  ADS  Google Scholar 

  41. QCDSF-UKQCD collaboration, T. Bakeyev et al., Nonperturbative renormalization and improvement of the local vector current for quenched and unquenched Wilson fermions, Phys. Lett. B 580 (2004) 197 [hep-lat/0305014] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Bhattacharya, R. Gupta, W. Lee, S.R. Sharpe and J.M. Wu, Improved bilinears in lattice QCD with non-degenerate quarks, Phys. Rev. D 73 (2006) 034504 [hep-lat/0511014] [INSPIRE].

    ADS  Google Scholar 

  43. G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, A general method for nonperturbative renormalization of lattice operators, Nucl. Phys. B 445 (1995) 81 [hep-lat/9411010] [INSPIRE].

    Article  ADS  Google Scholar 

  44. V. Maillart and F. Niedermayer, A specific lattice artefact in non-perturbative renormalization of operators, arXiv:0807.0030 [INSPIRE].

  45. S. Borsányi et al., QCD thermodynamics with dynamical overlap fermions, Phys. Lett. B 713 (2012) 342 [arXiv:1204.4089] [INSPIRE].

    Article  ADS  Google Scholar 

  46. G.I. Egri et al., Lattice QCD as a video game, Comput. Phys. Commun. 177 (2007) 631 [hep-lat/0611022] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dániel Nógrádi.

Additional information

ArXiv ePrint: 1205.0440

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borsányi, S., Dürr, S., Fodor, Z. et al. QCD thermodynamics with continuum extrapolated Wilson fermions I. J. High Energ. Phys. 2012, 126 (2012). https://doi.org/10.1007/JHEP08(2012)126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)126

Keywords

Navigation