Skip to main content
Log in

Integrated dipoles with MadDipole in the MadGraph framework

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Heading towards a full automation of next-to-leading order (NLO) QCD corrections, one important ingredient is the analytical integration over the one-particle phase space of the unresolved particle that is necessary when adding the subtraction terms to the virtual corrections. We present the implementation of these integrated dipoles in the MadGraph framework. The result is a package that allows an automated calculation for the NLO real emission parts of an arbitrary process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [SPIRES].

    Article  ADS  Google Scholar 

  2. F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].

    Article  ADS  Google Scholar 

  3. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  4. CompHEP collaboration, E. Boos et al., CompHEP 4.4: automatic computations from Lagrangians to events, Nucl. Instrum. Meth. A 534 (2004) 250 [hep-ph/0403113] [SPIRES].

    ADS  Google Scholar 

  5. A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].

  6. T. Gleisberg et al., SHERPA 1.α, a proof-of-concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [SPIRES].

    Article  ADS  Google Scholar 

  7. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].

    Article  ADS  Google Scholar 

  8. W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES].

  9. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].

    Article  ADS  Google Scholar 

  10. A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun. 180 (2009) 1941 [arXiv:0710.2427] [SPIRES].

    Article  ADS  Google Scholar 

  11. J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [SPIRES].

    ADS  Google Scholar 

  12. J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W+ 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [SPIRES].

    ADS  Google Scholar 

  13. Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [SPIRES].

    ADS  Google Scholar 

  14. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].

    Article  ADS  Google Scholar 

  15. S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production, JHEP 08 (2003) 007 [hep-ph/0305252] [SPIRES].

    Article  ADS  Google Scholar 

  16. S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in MC@NLO, JHEP 03 (2006) 092 [hep-ph/0512250] [SPIRES].

    Article  ADS  Google Scholar 

  17. P. Torrielli and S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO, JHEP 04 (2010) 110 [1002.4293] [SPIRES].

    Article  Google Scholar 

  18. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [SPIRES].

    Article  ADS  Google Scholar 

  19. P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [SPIRES].

    Article  ADS  Google Scholar 

  20. O. Latunde-Dada, S. Gieseke and B. Webber, A positive-weight next-to-leading-order Monte Carlo for e + e annihilation to hadrons, JHEP 02 (2007) 051 [hep-ph/0612281] [SPIRES].

    Article  ADS  Google Scholar 

  21. S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [SPIRES].

    Article  ADS  Google Scholar 

  22. S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [SPIRES].

    Article  ADS  Google Scholar 

  23. K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation of Drell-Yan vector boson production, JHEP 10 (2008) 015 [arXiv:0806.0290] [SPIRES].

    Article  ADS  Google Scholar 

  24. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [1002.2581] [SPIRES].

    Article  Google Scholar 

  25. D.B. Melrose, Reduction of Feynman diagrams, Nuovo Cim. 40 (1965) 181 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ+μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [SPIRES].

    Article  ADS  Google Scholar 

  27. Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].

    Article  ADS  Google Scholar 

  29. G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. C.F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].

    ADS  Google Scholar 

  31. W.T. Giele and G. Zanderighi, On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP 06 (2008) 038 [arXiv:0805.2152] [SPIRES].

    Article  ADS  Google Scholar 

  32. T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [SPIRES].

    Article  ADS  Google Scholar 

  33. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [SPIRES].

    Article  ADS  Google Scholar 

  34. A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [hep-ph/0505042] [SPIRES].

    Article  ADS  Google Scholar 

  35. C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [SPIRES].

    Article  ADS  Google Scholar 

  36. C.F. Berger et al., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [SPIRES].

    ADS  Google Scholar 

  37. R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3 jet production, JHEP 04 (2009) 077 [arXiv:0901.4101] [SPIRES].

    Article  ADS  Google Scholar 

  38. R. Keith Ellis, K. Melnikov and G. Zanderighi, W + 3 jet production at the Tevatron, Phys. Rev. D 80 (2009) 094002 [arXiv:0906.1445] [SPIRES].

    ADS  Google Scholar 

  39. C.F. Berger et al., Next-to-leading order QCD predictions for Z, γ* + 3-jet distributions at the Tevatron, 1004.1659 [SPIRES].

  40. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \( pp \to t\overline t b\overline b \) at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [SPIRES].

    Article  ADS  Google Scholar 

  41. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. full hadronic results, JHEP 03 (2010) 021 [1001.4006] [SPIRES].

    Article  Google Scholar 

  42. G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist: ppttbb, JHEP 09 (2009) 109 [arXiv:0907.4723] [SPIRES].

    Article  ADS  Google Scholar 

  43. G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of \( pp \to t\overline t + 2 \) jets at next-to-leading order, Phys. Rev. Lett. 104 (2010) 162002 [1002.4009] [SPIRES].

    Article  ADS  Google Scholar 

  44. T. Binoth et al., Next-to-leading order QCD corrections to \( pp \to b\overline b b\overline b \) at the LHC: the quark induced case, Phys. Lett. B 685 (2010) 293 [arXiv:0910.4379] [SPIRES].

    ADS  Google Scholar 

  45. W.T. Giele and E.W.N. Glover, Higher order corrections to jet cross-sections in e + e annihilation, Phys. Rev. D 46 (1992) 1980 [SPIRES].

    ADS  Google Scholar 

  46. Z. Kunszt and D.E. Soper, Calculation of jet cross-sections in hadron collisions at order α3 S , Phys. Rev. D 46 (1992) 192 [SPIRES].

    ADS  Google Scholar 

  47. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [SPIRES].

    Article  ADS  Google Scholar 

  48. G. Somogyi, Subtraction with hadronic initial states: an NNLO-compatible scheme, JHEP 05 (2009) 016 [arXiv:0903.1218] [SPIRES].

    Article  ADS  Google Scholar 

  49. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].

    Article  ADS  Google Scholar 

  50. S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [SPIRES].

    Article  ADS  Google Scholar 

  51. D.A. Kosower, Antenna factorization of gauge-theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [SPIRES].

    ADS  Google Scholar 

  52. J.M. Campbell, M.A. Cullen and E.W.N. Glover, Four jet event shapes in electron positron annihilation, Eur. Phys. J. C 9 (1999) 245 [hep-ph/9809429] [SPIRES].

    Article  ADS  Google Scholar 

  53. A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [SPIRES].

    Article  ADS  Google Scholar 

  54. A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [SPIRES].

    Article  ADS  Google Scholar 

  55. T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [SPIRES].

    Article  ADS  Google Scholar 

  56. M.H. Seymour and C. Tevlin, TeVJet: a general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].

  57. M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [SPIRES].

    Article  ADS  Google Scholar 

  58. K. Hasegawa, S. Moch and P. Uwer, AutoDipole — Automated generation of dipole subtraction terms, arXiv:0911.4371 [SPIRES].

  59. R. Frederix, T. Gehrmann and N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [SPIRES].

    Article  ADS  Google Scholar 

  60. R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [SPIRES].

    Article  ADS  Google Scholar 

  61. SM and NLO Multileg Working Group collaboration, J.R. Andersen et al., The SM and NLO multileg working group: summary report, 1003.1241 [SPIRES].

  62. T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, 1001.1307 [SPIRES].

  63. Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four-jet observables in electron positron annihilation, Phys. Rev. D 59 (1999) 014020 [hep-ph/9806317] [SPIRES].

    ADS  Google Scholar 

  64. J.M. Campbell, R.K. Ellis and F. Tramontano, Single top production and decay at next-to-leading order, Phys. Rev. D 70 (2004) 094012 [hep-ph/0408158] [SPIRES].

    ADS  Google Scholar 

  65. J.M. Campbell and F. Tramontano, Next-to-leading order corrections to W t production and decay, Nucl. Phys. B 726 (2005) 109 [hep-ph/0506289] [SPIRES].

    Article  ADS  Google Scholar 

  66. G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  67. C.G. Bollini and J.J. Giambiagi, Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim. B 12 (1972) 20 [SPIRES].

    Google Scholar 

  68. J.F. Ashmore, A method of gauge invariant regularization, Lett. Nuovo Cim. 4 (1972) 289 [SPIRES].

    Article  Google Scholar 

  69. G.M. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimension, Nuovo Cim. Lett. 4 (1972) 329 [SPIRES].

    Article  Google Scholar 

  70. W. Siegel, Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett. B 84 (1979) 193 [SPIRES].

    ADS  Google Scholar 

  71. W. Siegel, Inconsistency of supersymmetric dimensional regularization, Phys. Lett. B 94 (1980) 37 [SPIRES].

    ADS  Google Scholar 

  72. D. Stöckinger, Regularization by dimensional reduction: consistency, quantum action principle and supersymmetry, JHEP 03 (2005) 076 [hep-ph/0503129] [SPIRES].

    Article  ADS  Google Scholar 

  73. A. Signer and D. Stöckinger, Using dimensional reduction for hadronic collisions, Nucl. Phys. B 808 (2009) 88 [arXiv:0807.4424] [SPIRES].

    Article  ADS  Google Scholar 

  74. Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 411 (1994) 397 [hep-ph/9305239] [SPIRES].

    Article  ADS  Google Scholar 

  75. S. Catani, S. Dittmaier and Z. Trócsányi, One-loop singular behaviour of QCD and SUSY QCD amplitudes with massive partons, Phys. Lett. B 500 (2001) 149 [hep-ph/0011222] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Frederix.

Additional information

ArXiv ePrint: 1004.2905

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frederix, R., Gehrmann, T. & Greiner, N. Integrated dipoles with MadDipole in the MadGraph framework. J. High Energ. Phys. 2010, 86 (2010). https://doi.org/10.1007/JHEP06(2010)086

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2010)086

Keywords

Navigation