Skip to main content
Log in

Effective field theory and non-Gaussianity from general inflationary states

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the effects of non-trivial initial quantum states for inflationary fluctuations within the context of the effective field theory for inflation constructed by Cheung et al. which allows us to discriminate between different initial states in a model-independent way. We develop a Green’s function/path integral based formulation that incorporates initial state effects and use it to address questions such as how state-dependent is the consistency relation for the bispectrum, how many e-folds beyond the minimum required to solve the cosmological fine tunings of the big bang are we allowed so that some information from the initial state survives until late times, among others. We find that the so-called consistency condition relating the local limit of the bispectrum and the slow-roll parameter is a state-dependent statement that can be avoided for physically consistent initial states either with or without initial non-Gaussianities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    Article  ADS  Google Scholar 

  2. E. Komatsu and D.N. Spergel, Acoustic signatures in the primary microwave background bispectrum, Phys. Rev. D 63 (2001) 063002 [astro-ph/0005036] [INSPIRE].

    ADS  Google Scholar 

  3. N. Dalal, O. Dore, D. Huterer and A. Shirokov, The imprints of primordial non-Gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects, Phys. Rev. D 77 (2008) 123514 [arXiv:0710.4560] [INSPIRE].

    ADS  Google Scholar 

  4. WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Slosar, C. Hirata, U. Seljak, S. Ho and N. Padmanabhan, Constraints on local primordial non-Gaussianity from large scale structure, JCAP 08 (2008) 031 [arXiv:0805.3580] [INSPIRE].

    Article  ADS  Google Scholar 

  6. T. Bunch and P. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. J. Martin and R.H. Brandenberger, The TransPlanckian problem of inflationary cosmology, Phys. Rev. D 63 (2001) 123501 [hep-th/0005209] [INSPIRE].

    ADS  Google Scholar 

  8. U.H. Danielsson, A Note on inflation and transPlanckian physics, Phys. Rev. D 66 (2002) 023511 [hep-th/0203198] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. N. Kaloper, M. Kleban, A.E. Lawrence and S. Shenker, Signatures of short distance physics in the cosmic microwave background, Phys. Rev. D 66 (2002) 123510 [hep-th/0201158] [INSPIRE].

    ADS  Google Scholar 

  10. H. Collins and R. Holman, Renormalization of initial conditions and the trans-Planckian problem of inflation, Phys. Rev. D 71 (2005) 085009 [hep-th/0501158] [INSPIRE].

    ADS  Google Scholar 

  11. H. Collins and R. Holman, The Renormalization of the energy-momentum tensor for an effective initial state, Phys. Rev. D 74 (2006) 045009 [hep-th/0605107] [INSPIRE].

    ADS  Google Scholar 

  12. D. Babich, P. Creminelli and M. Zaldarriaga, The Shape of non-Gaussianities, JCAP 08 (2004) 009 [astro-ph/0405356] [INSPIRE].

    Article  ADS  Google Scholar 

  13. P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark and M. Zaldarriaga, Limits on non-Gaussianities from wmap data, JCAP 05 (2006) 004 [astro-ph/0509029] [INSPIRE].

    Article  ADS  Google Scholar 

  14. X. Chen, M.-x. Huang, S. Kachru and G. Shiu, Observational signatures and non-Gaussianities of general single field inflation, JCAP 01 (2007) 002 [hep-th/0605045] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R. Holman and A.J. Tolley, Enhanced Non-Gaussianity from Excited Initial States, JCAP 05 (2008) 001 [arXiv:0710.1302] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A.J. Tolley and M. Wyman, The Gelaton Scenario: Equilateral non-Gaussianity from multi-field dynamics, Phys. Rev. D 81 (2010) 043502 [arXiv:0910.1853] [INSPIRE].

    ADS  Google Scholar 

  17. L. Senatore, K.M. Smith and M. Zaldarriaga, Non-Gaussianities in Single Field Inflation and their Optimal Limits from the WMAP 5-year Data, JCAP 01 (2010) 028 [arXiv:0905.3746] [INSPIRE].

    Article  ADS  Google Scholar 

  18. D. Baumann and D. Green, Equilateral Non-Gaussianity and New Physics on the Horizon, JCAP 09 (2011) 014 [arXiv:1102.5343] [INSPIRE].

    Article  ADS  Google Scholar 

  19. H. Collins and R. Holman, Trans-Planckian enhancements of the primordial non-Gaussianities, Phys. Rev. D 80 (2009) 043524 [arXiv:0905.4925] [INSPIRE].

    ADS  Google Scholar 

  20. P.D. Meerburg, J.P. van der Schaar and P.S. Corasaniti, Signatures of Initial State Modifications on Bispectrum Statistics, JCAP 05 (2009) 018 [arXiv:0901.4044] [INSPIRE].

    Article  ADS  Google Scholar 

  21. I. Agullo and L. Parker, Non-Gaussianities and the Stimulated creation of quanta in the inflationary universe, Phys. Rev. D 83 (2011) 063526 [arXiv:1010.5766] [INSPIRE].

    ADS  Google Scholar 

  22. A. Ashoorioon and G. Shiu, A Note on Calm Excited States of Inflation, JCAP 03 (2011) 025 [arXiv:1012.3392] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J. Ganc, Calculating the local-type f NL for slow-roll inflation with a non-vacuum initial state, Phys. Rev. D 84 (2011) 063514 [arXiv:1104.0244] [INSPIRE].

    ADS  Google Scholar 

  24. A. Dey and S. Paban, Non-Gaussianities in the Cosmological Perturbation Spectrum due to Primordial Anisotropy, JCAP 04 (2012) 039 [arXiv:1106.5840] [INSPIRE].

    Article  ADS  Google Scholar 

  25. D. Chialva, Signatures of very high energy physics in the squeezed limit of the bispectrum (violation of Maldacenas condition), JCAP 10 (2012) 037 [arXiv:1108.4203] [INSPIRE].

    ADS  Google Scholar 

  26. S. Kundu, Inflation with General Initial Conditions for Scalar Perturbations, JCAP 02 (2012) 005 [arXiv:1110.4688] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Dey, E. Kovetz and S. Paban, Non-Gaussianities in the Cosmological Perturbation Spectrum due to Primordial Anisotropy II, JCAP 10 (2012) 055 [arXiv:1205.2758] [INSPIRE].

    Article  ADS  Google Scholar 

  28. I. Agullo and S. Shandera, Large non-Gaussian Halo Bias from Single Field Inflation, JCAP 09 (2012) 007 [arXiv:1204.4409] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Ganc and E. Komatsu, Scale-dependent bias of galaxies and mu-type distortion of the cosmic microwave background spectrum from single-field inflation with a modified initial state, Phys. Rev. D 86 (2012) 023518 [arXiv:1204.4241] [INSPIRE].

    ADS  Google Scholar 

  30. N. Agarwal, S. Ho, and S. Shandera, in preparation.

  31. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. L. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [INSPIRE].

    Google Scholar 

  34. P.M. Bakshi and K.T. Mahanthappa, Expectation value formalism in quantum field theory. 1., J. Math. Phys. 4 (1963) 1 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. P.M. Bakshi and K.T. Mahanthappa, Expectation value formalism in quantum field theory. 2., J. Math. Phys. 4 (1963) 12 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function, JCAP 10 (2004) 006 [astro-ph/0407059] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. C. Cheung, A.L. Fitzpatrick, J. Kaplan and L. Senatore, On the consistency relation of the 3-point function in single field inflation, JCAP 02 (2008) 021 [arXiv:0709.0295] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Fulling, Aspects of quantum field theory in curved space-time, Lond. Math. Soc. Student Texts 17 (1989) 1.

    MathSciNet  Google Scholar 

  39. N.D. Birrell and P.C.W. Davies, Quantum fields in curved space (Cambridge Monographs on Mathematical Physics), Cambridge University Press, Cambridge U.K. (1982).

    Book  Google Scholar 

  40. A. Gangui, F. Lucchin, S. Matarrese and S. Mollerach, The Three point correlation function of the cosmic microwave background in inflationary models, Astrophys. J. 430 (1994) 447 [astro-ph/9312033] [INSPIRE].

    Article  ADS  Google Scholar 

  41. L. Verde, L.-M. Wang, A. Heavens and M. Kamionkowski, Large scale structure, the cosmic microwave background and primordial non-Gaussianity, Mon. Not. Roy. Astron. Soc. 313 (2000) L141 [astro-ph/9906301] [INSPIRE].

    Article  ADS  Google Scholar 

  42. X. Chen, Primordial Non-Gaussianities from Inflation Models, Adv. Astron. 2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE].

    Article  ADS  Google Scholar 

  43. V. Assassi, D. Baumann and D. Green, On Soft Limits of Inflationary Correlation Functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].

    Article  ADS  Google Scholar 

  44. K. Hinterbichler, L. Hui and J. Khoury, Conformal Symmetries of Adiabatic Modes in Cosmology, JCAP 08 (2012) 017 [arXiv:1203.6351] [INSPIRE].

    Article  ADS  Google Scholar 

  45. I. Mata, S. Raju and S. Trivedi, CMB from CFT, arXiv:1211.5482 [INSPIRE].

  46. M. Porrati, Bounds on generic high-energy physics modifications to the primordial power spectrum from back reaction on the metric, Phys. Lett. B 596 (2004) 306 [hep-th/0402038] [INSPIRE].

    ADS  Google Scholar 

  47. M. Porrati, Effective field theory approach to cosmological initial conditions: Self-consistency bounds and non-Gaussianities, hep-th/0409210 [INSPIRE].

  48. B.R. Greene, K. Schalm, G. Shiu and J.P. van der Schaar, Decoupling in an expanding universe: Backreaction barely constrains short distance effects in the CMB, JCAP 02 (2005) 001 [hep-th/0411217] [INSPIRE].

    Article  ADS  Google Scholar 

  49. J. Berges, Introduction to nonequilibrium quantum field theory, AIP Conf. Proc. 739 (2005) 3 [hep-ph/0409233] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishant Agarwal.

Additional information

ArXiv ePrint: 1212.1172

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, N., Holman, R., Tolley, A.J. et al. Effective field theory and non-Gaussianity from general inflationary states. J. High Energ. Phys. 2013, 85 (2013). https://doi.org/10.1007/JHEP05(2013)085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)085

Keywords

Navigation