Skip to main content
Log in

Lepton flavour violation in the MSSM

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive new constraints on the quantities δ XY ij, X, Y = L,R, which parametrise the flavour-off-diagonal terms of the charged slepton mass matrix in the MSSM. Considering mass and anomalous magnetic moment of the electron we obtain the bound \( \left| {\delta_{LL}^{13}\delta_{RR}^{{13}}} \right| \lesssim 0.{1} \) for tan β = 50, which involves the poorly constrained element δ RR 13. We improve the predictions for the decays τμγ, τ and μ by including two-loop corrections which are enhanced if tan β is large. The finite renormalisation of the PMNS matrix from soft SUSY-breaking terms is derived and applied to the charged-Higgs-lepton vertex. We find that the experimental bound on BR(τ) severely limits the size of the MSSM loop correction to the PMNS element U e3, which is important for the proper interpretation of a future U e3 measurement. Subsequently we confront our new values for δ LL ij with a GUT analysis. Further, we include the effects of dimension-5 Yukawa terms, which are needed to fix the Yukawa unification of the first two generations. If universal supersymmetry breaking occurs above the GUT scale, we find the flavour structure of the dimension-5 Yukawa couplings tightly constrained by μ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gianotti, Searches for supersymmetry at high-energy colliders: the past, the present and the future, New J. Phys. 4 (2002) 63 [SPIRES].

    Article  ADS  Google Scholar 

  2. M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: an account of four-dimensional N = 1 supersymmetry in high energy physics, World Scientific, Hackensack U.S.A. (2004) [SPIRES].

    Google Scholar 

  3. L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [SPIRES].

    ADS  Google Scholar 

  4. M.S. Carena, S. Pokorski and C.E.M. Wagner, On the unification of couplings in the minimal supersymmetric Standard Model, Nucl. Phys. B 406 (1993) 59 [hep-ph/9303202] [SPIRES].

    Article  ADS  Google Scholar 

  5. R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [SPIRES].

    ADS  Google Scholar 

  6. M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [SPIRES].

    Article  ADS  Google Scholar 

  7. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Hints of θ 13 > 0 from global neutrino data analysis, Phys. Rev. Lett. 101 (2008) 141801 [arXiv:0806.2649] [SPIRES].

    Article  ADS  Google Scholar 

  8. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].

    ADS  Google Scholar 

  9. S.F. King, Neutrino mass and flavour models, AIP Conf. Proc. 1200 (2010) 103 [arXiv:0909.2969] [SPIRES].

    Article  ADS  Google Scholar 

  10. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [SPIRES].

    Article  ADS  Google Scholar 

  11. I. Masina and C.A. Savoy, Sleptonarium (constraints on the CP and flavour pattern of scalar lepton masses), Nucl. Phys. B 661 (2003) 365 [hep-ph/0211283] [SPIRES].

    ADS  Google Scholar 

  12. P. Paradisi, Constraints on SUSY lepton flavour violation by rare processes, JHEP 10 (2005) 006 [hep-ph/0505046] [SPIRES].

    Article  ADS  Google Scholar 

  13. L.J. Hall, V.A. Kostelecky and S. Raby, New flavor violations in supergravity models, Nucl. Phys. B 267 (1986) 415 [SPIRES].

    Article  ADS  Google Scholar 

  14. F. Gabbiani and A. Masiero, FCNC in generalized supersymmetric theories, Nucl. Phys. B 322 (1989) 235 [SPIRES].

    Article  ADS  Google Scholar 

  15. F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [SPIRES].

    Article  ADS  Google Scholar 

  16. M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \bar{t}b{H^{+} } \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [SPIRES].

    Article  ADS  Google Scholar 

  17. S. Marchetti, S. Mertens, U. Nierste and D. Stöckinger, tan β-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon, Phys. Rev. D 79 (2009) 013010 [arXiv:0808.1530] [SPIRES].

    ADS  Google Scholar 

  18. L. Hofer, U. Nierste and D. Scherer, Resummation of tan β-enhanced supersymmetric loop corrections beyond the decoupling limit, JHEP 10 (2009) 081 [arXiv:0907.5408] [SPIRES].

    Article  ADS  Google Scholar 

  19. A. Crivellin and U. Nierste, Supersymmetric renormalisation of the CKM matrix and new constraints on the squark mass matrices, Phys. Rev. D 79 (2009) 035018 [arXiv:0810.1613] [SPIRES].

    ADS  Google Scholar 

  20. A. Crivellin and U. Nierste, Chirally enhanced corrections to FCNC processes in the generic MSSM, arXiv:0908.4404 [SPIRES].

  21. A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawianowska, ΔM d,s , B 0 d, sμ + μ and BX s γ in supersymmetry at large tan β, Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145] [SPIRES].

    Article  ADS  Google Scholar 

  22. J.R. Ellis, J.S. Lee and A. Pilaftsis, B-meson observables in the maximally CP-violating MSSM with minimal flavour violation, Phys. Rev. D 76 (2007) 115011 [arXiv:0708.2079] [SPIRES].

    ADS  Google Scholar 

  23. J. Hisano, M. Nagai and P. Paradisi, Flavor effects on the electric dipole moments in supersymmetric theories: a beyond leading order analysis, Phys. Rev. D 80 (2009) 095014 [arXiv:0812.4283] [SPIRES].

    ADS  Google Scholar 

  24. A. Masiero, P. Paradisi and R. Petronzio, Probing new physics through μe universality in Kℓν, Phys. Rev. D 74 (2006) 011701 [hep-ph/0511289] [SPIRES].

    ADS  Google Scholar 

  25. F. Borzumati, G.R. Farrar, N. Polonsky and S.D. Thomas, Soft Yukawa couplings in supersymmetric theories, Nucl. Phys. B 555 (1999) 53 [hep-ph/9902443] [SPIRES].

    Article  ADS  Google Scholar 

  26. A. Crivellin and J. Girrbach, Constraining the MSSM sfermion mass matrices with light fermion masses, Phys. Rev. D 81 (2010) 076001 [1002.0227] [SPIRES].

    ADS  Google Scholar 

  27. B.C. Allanach et al., The Snowmass points and slopes: benchmarks for SUSY searches, Eur. Phys. J. C 25 (2002) 113 [hep-ph/0202233] [SPIRES].

    Article  ADS  Google Scholar 

  28. C. Hamzaoui, M. Pospelov and M. Toharia, Higgs-mediated FCNC in supersymmetric models with large tan β, Phys. Rev. D 59 (1999) 095005 [hep-ph/9807350] [SPIRES].

    ADS  Google Scholar 

  29. K.S. Babu and C.F. Kolda, Higgs mediated B 0μ + μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [SPIRES].

    Article  ADS  Google Scholar 

  30. ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future neutrino factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [SPIRES].

    Article  ADS  Google Scholar 

  31. J. Girrbach and U. Nierste, A critical look at Γ (K) /Γ (Kμν), in preparation.

  32. A. Masiero, P. Paradisi and R. Petronzio, Anatomy and phenomenology of the lepton flavor universality in SUSY theories, JHEP 11 (2008) 042 [arXiv:0807.4721] [SPIRES].

    Article  ADS  Google Scholar 

  33. J. Ellis, S. Lola and M. Raidal, Supersymmetric grand unification and lepton universality in Kℓν decays, Nucl. Phys. B 812 (2009) 128 [arXiv:0809.5211] [SPIRES].

    Article  ADS  Google Scholar 

  34. D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett. 100 (2008) 120801 [arXiv:0801.1134] [SPIRES].

    Article  ADS  Google Scholar 

  35. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Revised value of the eighth-order QED contribution to the anomalous magnetic moment of the electron, Phys. Rev. D 77 (2008) 053012 [arXiv:0712.2607] [SPIRES].

    ADS  Google Scholar 

  36. P. Clade et al., Determination of the fine structure constant based on Bloch oscillations of ultracold atoms in a vertical optical lattice, Phys. Rev. Lett. 96 (2006) 033001 [SPIRES].

    Article  ADS  Google Scholar 

  37. D. Stöckinger, The muon magnetic moment and supersymmetry, J. Phys. G 34 (2007) R45 [hep-ph/0609168] [SPIRES].

    ADS  Google Scholar 

  38. J. Rosiek, Complete set of Feynman rules for the MSSM — erratum, hep-ph/9511250 [SPIRES].

  39. T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric Standard Model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [SPIRES].

    ADS  Google Scholar 

  40. M. Ciuchini et al., Soft SUSY breaking grand unification: leptons versus quarks on the flavor playground, Nucl. Phys. B 783 (2007) 112 [hep-ph/0702144] [SPIRES].

    Article  ADS  Google Scholar 

  41. J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton-flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [SPIRES].

    ADS  Google Scholar 

  42. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi and T. Yanagida, Lepton flavor violation in the supersymmetric standard model with seesaw induced neutrino masses, Phys. Lett. B 357 (1995) 579 [hep-ph/9501407] [SPIRES].

    ADS  Google Scholar 

  43. Comparison of SUSY spectrum generators: mass spectra, relic density, etc, http://cern.ch/kraml/comparison/.

  44. G. Bélanger, S. Kraml and A. Pukhov, Comparison of SUSY spectrum calculations and impact on the relic density constraints from WMAP, Phys. Rev. D 72 (2005) 015003 [hep-ph/0502079] [SPIRES].

    ADS  Google Scholar 

  45. B.C. Allanach, S. Kraml and W. Porod, Theoretical uncertainties in sparticle mass predictions from computational tools, JHEP 03 (2003) 016 [hep-ph/0302102] [SPIRES].

    Article  ADS  Google Scholar 

  46. A. Masiero, S.K. VemPati and O. Vives, Seesaw and lepton flavour violation in SUSY SO(10), Nucl. Phys. B 649 (2003) 189 [hep-ph/0209303] [SPIRES].

    Article  ADS  Google Scholar 

  47. L. Calibbi, A. Faccia, A. Masiero and S.K. VemPati, Lepton flavour violation from SUSY-GUTs: where do we stand for MEG, PRISM/PRIME and a super flavour factory, Phys. Rev. D 74 (2006) 116002 [hep-ph/0605139] [SPIRES].

    ADS  Google Scholar 

  48. J. Hisano, M. Nagai, P. Paradisi and Y. Shimizu, Waiting for μeγ from the MEG experiment, JHEP 12 (2009) 030 [arXiv:0904.2080] [SPIRES].

    Article  ADS  Google Scholar 

  49. W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [SPIRES].

    Article  ADS  Google Scholar 

  50. P. Paradisi, Higgs-mediated τμ and τe transitions in II Higgs doublet model and supersymmetry, JHEP 02 (2006) 050 [hep-ph/0508054] [SPIRES].

    Article  ADS  Google Scholar 

  51. P. Paradisi, Higgs-mediated eμ transitions in II Higgs doublet model and supersymmetry, JHEP 08 (2006) 047 [hep-ph/0601100] [SPIRES].

    Article  ADS  Google Scholar 

  52. J.A. Casas and A. Ibarra, Oscillating neutrinos and μ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].

    Article  ADS  Google Scholar 

  53. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  54. H. Georgi, The state of the art — gauge theories (talk), AIP Conf. Proc. 23 (1975) 575 [SPIRES].

    ADS  Google Scholar 

  55. H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. A. Masiero, S.K. VemPati and O. Vives, Massive neutrinos and flavour violation, New J. Phys. 6 (2004) 202 [hep-ph/0407325] [SPIRES].

    Article  ADS  Google Scholar 

  57. S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [SPIRES].

    ADS  Google Scholar 

  58. D.I. Kazakov, Supersymmetry in particle physics: the renormalization group viewpoint, Phys. Rept. 344 (2001) 309 [hep-ph/0001257] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Effects of supergravity induced electroweak breaking on rare B decays and mixings, Nucl. Phys. B 353 (1991) 591 [SPIRES].

    Article  ADS  Google Scholar 

  60. J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [SPIRES].

    ADS  Google Scholar 

  61. S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [SPIRES].

    Article  ADS  Google Scholar 

  62. F. Borzumati and A. Masiero, Large muon- and electron-number nonconservation in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [SPIRES].

    Article  ADS  Google Scholar 

  63. S. Antusch, J. Kersten, M. Lindner and M. Ratz, Neutrino mass matrix running for non-degenerate see-saw scales, Phys. Lett. B 538 (2002) 87 [hep-ph/0203233] [SPIRES].

    ADS  Google Scholar 

  64. T. Mori, MEG: the experiment to search for μ, Nucl. Phys. (Proc. Suppl.) 169 (2007) 166 [SPIRES].

    Article  ADS  Google Scholar 

  65. J.R. Ellis and M.K. Gaillard, Fermion masses and Higgs representations in SU(5), Phys. Lett. B 88 (1979) 315 [SPIRES].

    ADS  Google Scholar 

  66. B. Bajc, P. Fileviez Perez and G. Senjanović, Proton decay in minimal supersymmetric SU(5), Phys. Rev. D 66 (2002) 075005 [hep-ph/0204311] [SPIRES].

    ADS  Google Scholar 

  67. D. Emmanuel-Costa and S. Wiesenfeldt, Proton decay in a consistent supersymmetric SU(5) GUT model, Nucl. Phys. B 661 (2003) 62 [hep-ph/0302272] [SPIRES].

    ADS  Google Scholar 

  68. Z. Berezhiani, Z. Tavartkiladze and M. Vysotsky, D = 5 operators in SUSY GUT: fermion masses versus proton decay, hep-ph/9809301 [SPIRES].

  69. B. Bajc, P. Fileviez Perez and G. Senjanović, Minimal supersymmetric SU(5) theory and proton decay: where do we stand?, hep-ph/0210374 [SPIRES].

  70. F. Borzumati, S. Mishima and T. Yamashita, Non-CKM induced flavor violation in ’minimal’ SUSY SU(5) models, arXiv:0705.2664 [SPIRES].

  71. N. Arkani-Hamed, H.-C. Cheng and L.J. Hall, Flavor mixing signals for realistic supersymmetric unification, Phys. Rev. D 53 (1996) 413 [hep-ph/9508288] [SPIRES].

    ADS  Google Scholar 

  72. J. Hisano, D. Nomura, Y. Okada, Y. Shimizu and M. Tanaka, Enhancement of μeγ in the supersymmetric SU(5) GUT at large tan β, Phys. Rev. D 58 (1998) 116010 [hep-ph/9805367] [SPIRES].

    ADS  Google Scholar 

  73. S. Baek, T. Goto, Y. Okada and K.-I. Okumura, Muon anomalous magnetic moment, lepton flavor violation and flavor changing neutral current processes in SUSY GUT with right-handed neutrino, Phys. Rev. D 64 (2001) 095001 [hep-ph/0104146] [SPIRES].

    ADS  Google Scholar 

  74. P. Ko, J.-H. Park and M. Yamaguchi, Sflavor mixing map viewed from a high scale in supersymmetric SU(5), JHEP 11 (2008) 051 [arXiv:0809.2784] [SPIRES].

    Article  ADS  Google Scholar 

  75. S. Trine, S. Westhoff and S. Wiesenfeldt, Probing Yukawa unification with K and B mixing, JHEP 08 (2009) 002 [arXiv:0904.0378] [SPIRES].

    Article  ADS  Google Scholar 

  76. F. Borzumati and T. Yamashita, Minimal supersymmetric SU(5) model with nonrenormalizable operators: seesaw mechanism and violation of flavour and CP, arXiv:0903.2793 [SPIRES].

  77. F. Borzumati and T. Yamashita, The nrMSSU(5) and universality of soft masses, AIP Conf. Proc. 1200 (2010) 916 [arXiv:0910.0372] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Nierste.

Additional information

ArXiv ePrint: 0910.2663

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girrbach, J., Mertens, S., Nierste, U. et al. Lepton flavour violation in the MSSM. J. High Energ. Phys. 2010, 26 (2010). https://doi.org/10.1007/JHEP05(2010)026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)026

Keywords

Navigation