Skip to main content
Log in

Development of genetic maps of the citrus varieties ‘Murcott’ tangor and ‘Pêra’ sweet orange by using fluorescent AFLP markers

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The progeny of 87 BC1 hybrids of ‘Murcott’ tangor and ‘Pêra’ sweet orange, genotyped with fluorescent amplified fragment length polymorphism (fAFLP) markers, was used for the construction of genetic maps for both citrus varieties. Mapping strategies, considering the progeny as a result of backcrossing and cross-pollination, were exploited in Mapmaker 2.0 (LOD score ≥ 3.0 and 9 ≤ 0.40) and JoinMap 3.0 software (LOD score ≥ 3.0 and 9 ≤ 0.25), respectively. Genetic map distances (in cM) between the linked fAFLPs were estimated, in both packages, by the Kosambi’s function. Maps of both parents were constructed in Mapmaker with 121 of the 202 fAFLP markers showing 1:1 Mendelian segregation rates (’Murcott’ map: 65 fAFLPs, average distance between them 29.5 cM, divided into 9 linkage groups (LGs), total size 1651.47 cM; ’Pêra’ map: 55 fAFLPs, average distance between them 31.9 cM, divided into 5 LGs, total size 1596.2 cM). The second ’Murcott’ map, constructed through linkage analysis of 347 fAFLP markers with 3:1 or 1:1 segregation rates by using JoinMap, resulted in the linkage of 227 markers with an average distance of 4.25 cM among them, divided into 9 LGs of 845 cM. fAFLP loci showing distorted segregation and/or clustered were observed in different LGs of the maps generated by all the software. The use of the ’Murcott’ tangor and ’Pêra’ sweet orange genetic maps in research on identification of citrus QRLs (quantitative resistance loci) toXylella fastidiosa and QTLs (quantitative trait loci) related to the productivity and quality of the juice, respectively, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaro AA, Maia ML, Gonzalez MA, 1997. Efeitos econômicos decorrentes da clorose variegada dos citros. In: Donadio LC, Moreira CS, eds. Clorose Variegada dos Citros, Bebedouro: 162.

  • Araújo EF, Queiroz LP, Machado MA, 2003. What isCitrus? Taxonomic implications from a study of cp-DNA evolution in the tribe Citreae (Rutaceae, subfamily Aurantioideae). Organisms Diversity Evolution 3: 55–62.

    Article  Google Scholar 

  • Ayres M, Ayres Júnior M, Ayres DL, Santos AS, 2000. BioEstat: aplicaçöes estatísticas nas áreas das ciências biológicas e médicas. Publicaçőes Avulsas Mamirauá. Belém/PA: Sociedade Civil Mamirauá: 272.

  • Baccarcia G, Albertini E, Tavoletti S, Falcinelli M, Veronesi F, 1999. AFLP fingerprinting inMedicago spp.: its development and application in linkage mapping. Plant Breeding 118: 335–340.

    Article  Google Scholar 

  • Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F, 1999. A high-density molecular map for ryegrass (Loliumperenne) using AFLP markers. Theor Appl Genet 99: 445–452.

    Article  CAS  Google Scholar 

  • Buetow KH, 1991. Influence of aberrant observations on high-resolution linkage analysis outcomes. Am J Hum Genet 49: 985–994.

    CAS  PubMed  Google Scholar 

  • Cai Q, Guy CL, Moore GA, 1994. Extension of the linkage map inCitrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation-responsive loci. Theor Appl Genet 89: 606–614.

    Article  CAS  Google Scholar 

  • Castiglioni P, Ajmone-Marsan P, Van Wijk R Motto M, 1998. AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theor Appl Genet 99: 425–431.

    Article  Google Scholar 

  • Chang CJ, Garnier M, Zreik L, Rossetti V, Bové JM, 1993. Culture and serological detection of the xylem-limited bacterium causing citrus variegated chlorosis and its identification as a strain ofXylella fastidiosa. Curr Microbiol 27: 137–142.

    Article  CAS  Google Scholar 

  • Cristofani M, Machado MA, Grattapaglia D, 1999. Genetic linkage maps ofCitrus sunki Hort. ex. Tan.and Poncirus trifoliata (L.) Raf. and mapping of citrus tristeza virus resistance gene. Euphytica 109: 25–32.

    Article  CAS  Google Scholar 

  • De Simone M, Russo MP, Puleo G, Marsan PA, Lorenzoni C, Marocco A, Recupero GR, 1998. Construction of genetic maps forCitrus aurantium andC. latipes based on AFLP, RAPD and RFLP markers. Fruits 53: 383–390.

    Google Scholar 

  • Deng RE, Huang SY, Xiao S, Gmitter CM, 1997. Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene fromPoncirus trifoliata. Genome 40: 697–704.

    Article  CAS  PubMed  Google Scholar 

  • Dettori MT, Quarta R, Verde I, 2001. A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44: 783–790.

    Article  CAS  PubMed  Google Scholar 

  • Durham RE, Liou PC, Gmitter FG, Moore GA, 1992. Linkage of restriction fragment length polymorphisms and isozymes inCitrus. Theor Appl Genet 84: 39–48.

    Article  CAS  Google Scholar 

  • Fang DQ, Federici CT, Roose ML, 1997. Development of molecular markers linked to a gene controlling fruit acidity in citrus. Genome 40: 841–849.

    Article  CAS  PubMed  Google Scholar 

  • Flament MH, Kebe I, Clément D, Pieretti I, Risterucci AM, ŃGoran JAK, Cilas C, 2001. Genetic mapping of resistance factors toPhytophthora palmivora in cocoa. Genome 44: 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Gadish I, Zamir D, 1986. Differential zygotic abortion in an interspecificLycopersicon cross. Genome 29: 156–159.

    Google Scholar 

  • García R, Asíns MJ, Forner J, Carbonell EA, 1999. Genetic analysis of apomixis inCitrus and Poncirus by molecular markers. Theor Appl Genet 99: 511–518.

    Article  Google Scholar 

  • Garcia MR, Asns MJ, Carbonell EA, 2000. QTL analysis of yield and seed number inCitrus. Theor Appl Genet 101: 487–493.

    Article  CAS  Google Scholar 

  • Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD, 1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucl Acids Res 19: 6553–6558.

    Article  CAS  PubMed  Google Scholar 

  • Gmitter Jr FG, Xiao SY, Huang S, Hu X.L, Garnsey SM, Deng Z, 1996. A localized linkage map of the citrus virus resistance gene region. Theor Appl Genet 92: 688–695.

    Article  CAS  Google Scholar 

  • Guerra M, 1993. Cytogenetics of Rutaceae. V. High chromosomal variability inCitrus species revealed by CMA/DAPI staining. Heredity 71: 234–241.

    Article  Google Scholar 

  • Heun M, Kennedy E, Anderson JA, Lapitan NLV, Sorrells ME, 1991. Construction of arestriction fragmentlength polymorphismmap for barley (Hordeum vulgare). Genome 34: 437–447.

    Google Scholar 

  • Jarrell DC, Roose ML, Traugh SN, Kupper RS, 1992. A genetic maps ofCitrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor Appl Genet 84: 49–56.

    Article  CAS  Google Scholar 

  • Kijas JMH, Thomas MR, Fowler JCS, Roose ML, 1997. Integration of trinucleotide microsatellites into a linkage map ofCitrus. Theor Appl Genet 94: 701–706.

    Article  CAS  Google Scholar 

  • Kosambi DD, 1944. The estimation of map distance from recombination values. Ann Eugen 12: 172–175.

    Google Scholar 

  • Krutovskii KV, Vollmer SS, Soresen FC, Adams WT, Knapp SJ, Strauss SH, 1998. RAPD genome maps of Douglas-fir. JHered 3: 197–205.

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L, 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Laranjeira FF, Pompeu Jr J, Harakava R, Figueiredo JO, Carvalho AS, Coletta Filho HD, 1998. Cultivares e espécies cítricas hospedeiras deXylella fastidiosa em condiçôes de campo. Fitopatologia bras 23: 147–154.

    Google Scholar 

  • Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnate H, Seguin MA, 2000. Saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers. Theor Appl Genet 100: 127–138.

    Article  CAS  Google Scholar 

  • Ling P, Duncam LW, Deng Z, Dunn Z, Hu X, Huang S, Gmitter FG, 2000. Inheritance of citrus nematode resistance and its linkage with molecular markers. Theor Appl Genet 100: 1010–1017.

    Article  CAS  Google Scholar 

  • Liou PC, 1990. A molecular study of the citrus genome through restriction fragment length polymorphism and isozyme mapping. PhD thesis. University of Florida, Gainesville, FL: 143.

    Google Scholar 

  • Lu ZX, Sosinski GL, Reighard WV, Baird WV, Abott AG, 1998. Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41: 199–207.

    Article  CAS  Google Scholar 

  • Luro F, Lorieux M, Laigret F, Bové JM, Ollitraut P, 1994. Genetic mapping of an intergeneric citrus hybrid using molecular markers. Fruits 49: 404–408.

    CAS  Google Scholar 

  • Machado MA, Coletta Filho HD, Targon MLNP, Pompeu Juniror J, 1996. Genetic relationship of Mediterranean mandarins (Citrus deliciosa Tenore) using RAPD markers. Euphytica 92: 321–332.

    Article  Google Scholar 

  • Maliepaard C, Jansen J, van Ooijen JW, 1997. Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genet Res Camb 70: 236–250.

    Google Scholar 

  • Nandi S, Subudhi PK, Senadhira D, Manigbas NL, Sen-Mandi S, Huang N, 1997. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 255: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Nienhuis J, Helentjaris T, Slocum M, Ruggero B, Schaefer A, 1987. Restriction fragment length polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci 27: 797–803.

    Article  Google Scholar 

  • Nikaido A, Yoshimaru H, Tsumura Y, Suyama Y, Murai M, Nagasaka K, 1999. Segregation distortion for AFLP markers inCryptomeria japonica. Genes Genet Systems 74: 55–59.

    Article  CAS  Google Scholar 

  • Oliveira AC, Garcia AN, Cristofani M, Machado MA, 2002. Identification of citrus hybrids through the combinationof leaf apex morphology and SS Rmarkers. Euphytica 128: 397–403.

    Article  Google Scholar 

  • Oliveira AC, 2003. Clorose variegada dos citros: quantificação molecular do agente causal, avaliação de trocas gasosas de plantas infectadas e mapeamento de lócus de resistçncia quantitativa de citros àXylellafastidiosa Wells (1987) com fAFLPs. PhD thesis. Universidade Estadual de Campinas, Campinas, SP: 287.

    Google Scholar 

  • Roose ML, Schwarzacher T, Heslop-Harrison J, 1998. The chromosomes ofCitrus andPoncirus species and hybrids: identification of characteristic chromosomes and physical mapping of rDNA loci using in situ hybridization and fluorochrome banding. J Hered 89: 83–86.

    Article  CAS  PubMed  Google Scholar 

  • Roose ML, Jarrel DC, Kupper RS, 1992. Genetic mapping inCitrus Poncirus F2 population. Proc.Int.Soc. Citriculture 1: 210–213.

    Google Scholar 

  • Ruiz C, Asins MJ, 2003. Comparison betweenPoncirus andCitrus genetic linkage maps. Theor Appl Genet 106: 826–836.

    CAS  PubMed  Google Scholar 

  • Sankar AA and Moore GA, 2001. Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of the linkage map. Theor Appl Gene 102: 206–214.

    Article  CAS  Google Scholar 

  • Shields DC, Collins A, Buetow KH, Morton NE, 1991. Error filtration, interference, and the human linkage map. Proc Natl Acad Sci USA 88: 6501–6505.

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Doyle JJ, 1998. Molecular systematics of plants. II. DNA sequencing. Kluwer Academic Publishers. Norwell, Miss: 265–296.

  • Tozlu I, Guy CL, Moore GA, 1999a. QTL analysis of Na+ and Cl accumulation-related traits in an intergeneric BC1 progeny ofCitrus andPoncirus under saline and nonsaline environments. Genome 42: 692–705.

    Article  CAS  Google Scholar 

  • Tozlu I, Guy CL, Moore GA, 1999b. QTL analysis of morphological traits in an intergeneric BC1 progeny ofCitrus andPoncirus under saline and nonsaline environments. Genome 42: 1020–1029.

    Article  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE, 2001. Join MapTM version 3.0; software for the calculation of genetic linkage maps. Wageningen: Plant Res Internat 2001: 51.

    Google Scholar 

  • Wells JM, Raju BC, Hung H, Weisburg WG, Mandelco-Paul L, Brenner DJ, 1987.Xylella fastidiosa gen. nov., sp. nov: gram-negative, xylem-limited, fastidious plant bacteria related toXanthomonas spp. Int J Syst Bacteriol 37: 136–143.

    Article  CAS  Google Scholar 

  • Zabeau M, 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application N 0534858 A1.

  • Zamir D, Tadmor Y, 1986. Unequal segregation of nuclear genes in plants. Bot Gaz 147: 355–358.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariângela Cristofani-Yaly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, A.C., Bastianel, M., Cristofani-Yaly, M. et al. Development of genetic maps of the citrus varieties ‘Murcott’ tangor and ‘Pêra’ sweet orange by using fluorescent AFLP markers. J Appl Genet 48, 219–231 (2007). https://doi.org/10.1007/BF03195216

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195216

Keywords

Navigation