Skip to main content
Log in

Diagenetic stabilization pathways of magnesian calcites

  • Special Papers
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Stabilization of high magnesian calcites (>4 mole% MgCO3) to low magnesian calcite (0–4 mole% MgCO3) and dolomite involves a reduction in the solubility of these phases during diagenetic alteration. The solubility of a magnesian calcite is controlled not only by the Mg concentration, but also other chemical and physical properties of the solid. These other properties include the amount of: 1) trace element diluents other than Mg (e.g., sodium, sulfate, adsorbed or structural water); 2) carbonate ion positional or cation ordering: 3) microstructural and surface defects; and 4) adhered small particles. Crystal size also may affect the solubility of a magnesian calcite. A magnesian calcite may become more stable in the natural environment by a decrease in Mg concentration, by loss of other trace elements and/or changes in its physical properties. Few studies exist of magnesian calcites in sediments and limestones undergoing diagenetic alteration that can be used to document the typical stabilization pathways followed by magnesian calcites. Several stabilization pathways are proposed, based mainly on experimental and theoretical arguments, to encourage further investigation of magnesian calcite diagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AISSAOUI, D.M., 1988, Magnesian calcite cements and their diagenesis: dissolution and dolomitization, Mururoa Atoll:Sedimentology, v. 35, 821–841.

    Google Scholar 

  • BERNER, R.A., 1971, Principles of Chemical Sedimentology: New York: McGraw Hill, 240 p.

    Google Scholar 

  • BATHURST, R.G.C., 1975, Carbonate Sediments and Their Diagenesis (2nd Edition): New York, Elsevier, 658 p.

    Google Scholar 

  • BISCHOFF, W.D., BISHOP, F.C., and MACKENZIE, F.T., 1983, Biogenically produced magnesian calcite: Inhomogeneities in chemical and physical properties; comparison with synthetic phases:Am. Mineralogist, v. 68, p. 1183–1188.

    Google Scholar 

  • BISCHOFF, W.D., SHARMA, S.K., and MACKENZIE, F.T., 1985, Carbonate ion disorder in synthetic and biogenic magnesian calcites: A Raman spectral study:Am. Mineralogist, v. 70, p. 581–589.

    Google Scholar 

  • BISCHOFF, W.D., MACKENZIE, F.T., and BISHOP, F.C., 1987, Stabilities of synthetic magnesian calcites in aqueous solution: Comparison with biogenic materials:Geochimica et Cosmochimica Acta, v. 51, no. 7, p. 1413–1423.

    Article  Google Scholar 

  • BUDD, D.A., 1992, Dissolution of high-Mg calcite fossils and the formation of biomolds during mineralogical stabilization:Carbonates and Evaporites, v. 7, p. 74–81.

    Article  Google Scholar 

  • BUSENBERG, E., and PLUMMER, L.N., 1985, Kinetic and thermodynamic factors controlling the distribution of SO42- and Na+ in calcites and selected aragonites:Geochimica et Cosmochimica Acta, v. 49, p. 713–726.

    Article  Google Scholar 

  • BUSENBERG, E., and PLUMMER, L.N., 1989, Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure:Geochimica et Cosmochimica Acta, v. 53, p. 1189–1208.

    Article  Google Scholar 

  • CHAVE, K.E., 1952, A solid solution between calcite and dolomite:Jour. of Geology, v. 60, p. 190–192.

    Article  Google Scholar 

  • CHAVE, K.E., 1954a, Aspects of the biogeochemistry of Mg, 1: Calcareous marine organisms:Jour. of Geology, v. 62, p. 266–283.

    Article  Google Scholar 

  • CHAVE, K.E., 1954b, Aspects of the biogeochemistry of Mg, 2: Calcareous sediments and rocks:Jour. of Geology, v. 62, p. 587–599.

    Article  Google Scholar 

  • CONSTANTZ, B.R., 1986, The primary surface area of corals and variations in their susceptibility to diagenesis,in Schroeder, J.H., and Purser, B.H., eds., Reef Diagenesis: New York, Springer-Verlag, p. 53–76.

    Chapter  Google Scholar 

  • DONATH, F.A., CAROZZI, A.V., FRUTH, L.S., and RICH, D., 1980, Oomoldic porosity experimentally developed in Mississippian oolitic limestone:Jour. Sedimentary Petrology, v. 50, p. 1249–1260.

    Google Scholar 

  • FRIEDMAN, G.M., 1964, Early diagenesis and lithification in carbonate sediments:Jour. Sedimentary Petrology, v. 34, p. 777–813.

    Google Scholar 

  • GAFFEY, S.J., 1988, Water in skeletal carbonates:Jour. Sedimentary Petrology, v. 58, p. 397–414.

    Google Scholar 

  • GAFFEY, S.J., KOLAK, J.J., and BRONNIMANN, C.E., 1991, Effects of drying, heating, annealing, and roasting on carbonate skeletal material, with geochemical and diagenetic implications:Geochimica et Cosmochimica Acta, v. 55, p. 1627–1640.

    Article  Google Scholar 

  • HEINRICH, R., and ZANKL, H., 1986, Diagenesis of Upper Triassic Wetterstein reefs of the Bavarian Alps,in Schroeder, J.H., and Purser, B.H., eds., Reef Diagenesis: New York, Springer-Verlag, p. 245–268.

    Chapter  Google Scholar 

  • JAMES, N.P., and CHOQUETTE, P.W., 1983, Diagenesis 6: Limestones-the sea floor diagnetic environment:Geoscience Canada, v. 10, p. 162–179.

    Google Scholar 

  • JAMES, N.P., and CHOQUETTE, P.W., 1984, Diagenesis 6: Limestones-the meteoric diagenetic environment:Geoscience Canada, v. 11, p. 161–193.

    Google Scholar 

  • LAND, L.S., 1967, Diagenesis of skeletal carbonates:Jour. Sedimentary Petrology, v. 37, p. 914–930.

    Google Scholar 

  • MACKENZIE, F.T., BISCHOFF, W.D., BISHOP, F.C., LOIJENS, M., SCHOONMAKER, J., and WOLLAST, R., 1983, Magnesian calcites: Low-temperature occurrence, solubility, and solid solution behavior, in Reeder, R.J., ed., Carbonates: Mineralogy and chemistry:Mineral. Soc. America, Reviews in Mineralogy, v. 11, p. 97–144.

  • MAZZULLO, S.J., and BISCHOFF, W.D., 1992, Meteoric calcitization and incipient lithification of recent high-magnesium calcite muds, Belize:Jour. Sedimentary Petrology, v. 62, p. 196–207.

    Google Scholar 

  • MAZZULLO, S.J., REID, A.M., and GREGG J.M., 1987, Dolomitization of Holocene Mg-calcite supratidal deposits, Ambergris Cay, Belize:Geol. Soc. Amer. Bull., v. 98, p. 224–231.

    Article  Google Scholar 

  • MOBERLY, R., 1968, Composition of magnesian calcites of algae and pelecypods by electron microprobe analysis:Sedimentology, v. 11, p. 61–82.

    Article  Google Scholar 

  • MOBERLY, R., 1970, Microprobe study of diagenesis in calcareous algae:Sedimentology, v. 14, p. 113–123.

    Article  Google Scholar 

  • MORSE, J.W., and MACKENZIE, F.T., 1990, Geochemistry of Sedimentary Carbonates: New York, Elsevier, 707 p.

    Google Scholar 

  • MUCCI, A., and MORSE, J.W., 1984, The solubility of calcite in seawater solutions of various magnesium concentration, It=0.679 m at 25°C and one atmosphere total pressure:Geochimica et Cosmochimica Acta, v. 48, p. 815–822.

    Article  Google Scholar 

  • NAVROTSKY, A., and CAPOBIANCO, C., 1987, Enthalpies of formation of dolomite and of magnesian calcites:Am. Mineralogist, v. 72, p. 782–787.

    Google Scholar 

  • PLUMMER, L.N., and MACKENZIE, F.T., 1974, Predicting mineral solubility from rate data: Application to the dissolution of magnesian calcites:Am. Jour. Science, v. 274, p. 61–83.

    Article  Google Scholar 

  • RAO, C.G., and SHARMA, D.K., 1986, High-magnesium calcite from Sorgharwari limestone-shale rhythmites of Lower Vindhyan (Proterozoic) age, Lesser Himalayas, northwest India:Sed. Geology, v. 49, p. 281–290.

    Article  Google Scholar 

  • SALLER, A.H., 1986, Radiaxial calcite in Lower Miocene strata, subsurface Enewetak atoll:Jour. Sed. Petrology, v. 56, p. 743–762.

    Google Scholar 

  • SANDBERG, P.A., 1983, Anoscillating trend in Phanerozoic nonskeletal carbonate mineralogy:Nature, v. 305, p. 19–22.

    Article  Google Scholar 

  • SANDBERG, P.A., 1985, Aragonite cements and their occurrence in ancient limestones, in Schneidermann, N. and Harris, P.M., eds., Carbonate Cements: SEPM Spec. Publ. 36, p. 33–57.

  • SCHLAGER, W., and JAMES, N.P., 1978, Low-magnesium calcite limestones forming at the deep-sea floor, Tongue of the Ocean, Bahamas:Sedimentology, v. 15, p. 675–702.

    Article  Google Scholar 

  • SCHROEDER, J.H., DWORNIK, E.J., and PAPIKE, J.J., 1969, Primary protodolomite in echinoid skeletons:Geol. Soc. Amer. Bull., v. 80, p. 1613–1616.

    Article  Google Scholar 

  • STEHLI, F.G., and HOWER, J., 1961, Mineralogy and early diagnesis of carbonate sediments:Jour. Sed. Petrology, v. 31, p. 358–371.

    Google Scholar 

  • THORSTENSON, D.C., and PLUMMER, L.N., 1977, Equilibrium criteria for two component solids reacting with fixed composition in an aqueous phase — example: the magnesian calcites:Am. Jour. Science, v. 277, p. 1203–1223.

    Article  Google Scholar 

  • TURNER, J.V., ANDERSON, T.F., SANDBERG, P.A., and GOLDSTEIN, S.J., 1986, Isotopic, chemical and textural relations during the experimental alteration of biogenic high-magnesian calcite:Geochimica et Cosmochimica Acta, v. 50, p. 495–506.

    Article  Google Scholar 

  • VIDETICH, P.E., 1985, Electronmicroprobe study of Mg distribution in Recent Mg calcites and recrystallized equivalents from the Pleistocene and Tertiary:Jour. Sed. Petrology, v. 55, p. 421–455.

    Google Scholar 

  • WALTER, L.M., 1985, Relative reactivity of skeletal carbonates during dissolution: implications for diagenesis, in Schneidermann, N. and Harris, P.M., eds., Carbonate Cements:SEPM Spec. Publ., 36, p. 3–16.

  • WALTER, L.M., and HANOR, J.S., 1979, Effects of orthophosphate on the dissolution kinetics of biogenic magnesian calcites:Geochimica et Cosmochimica Acta, v. 43, p. 1377–1385.

    Article  Google Scholar 

  • WALTER, L.M., and MORSE, J.W., 1984a, Magnesian calcite stabilities.A reevaluation: Geochimica et Cosmochimica Acta, v. 48, p. 1059–1070.

    Google Scholar 

  • WALTER, L.M., and MORSE, J.W., 1984b, Reactive surface area of skeletal carbonates during dissolution: Effect of grain size:Jour. Sed. Petrology, v. 54, p. 1081–1090.

    Google Scholar 

  • WALTER, L.M., and MORSE, J.W., 1985, The dissolution kinetics of shallow marine carbonates in seawater: A laboratory study:Geochimica et Cosmochimica Acta, v. 49, p. 1503–1513.

    Article  Google Scholar 

  • WENK, H.-R., BARBER, D.J., and REEDER, R.J., 1983, Microstructures in carbonates, in Reeder, R.J., ed., Carbonates: Mineralogy and chemistry:Mineral. Soc. America, Reviews in Mineralogy, v. 11, p. 301–367.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bischoff, W.D., Bertram, M.A., Mackenzie, F.T. et al. Diagenetic stabilization pathways of magnesian calcites. Carbonates Evaporites 8, 82–89 (1993). https://doi.org/10.1007/BF03175165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175165

Keywords

Navigation