Skip to main content
Log in

Global existence and large time behaviour of solutions for the Vlasov-Stokes equations

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

One considers the Vlasov-Stokes equations to model the motion of a solid particles suspension in a Stokes flow. The dispersed phase, is modelled by a transport kinetic equation with acceleration corresponding to the Stokes drag and gravity field. The viscous fluid is assumed to be incompressible and its velocity satisfies the Stokes equations with an external force. This force is due to the relative velocity of the dispersed phase in the fluid. Denoting byN the space dimension, we prove global existence results of solutions forN ≥ 2. We also obtain the large time asymptotic behaviour of the solutions forN = 2 andN = 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Beals, and V. Protopopescu, An abstract time dependant transport equations. J. Math. Anal. Appl.,121 (1987), 370–405.

    Article  MATH  MathSciNet  Google Scholar 

  2. M.E. Bogovskii, Solutions of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet Math Dokl.,20 (1979), 1079–198.

    Google Scholar 

  3. W. Borchers and T. Miyaka, Algebraic L2 decay for Navier-Stokes flow in exterior domain. Acta Math.,165 (1990), 189–227.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Caflisch and G. Papanicolaou, Dynamics theory of suspensions with Brownian effect. SIAM J. Appl. Math.,43 (1983), 885–906.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Padova.,31 (1961), 308–340.

    MATH  MathSciNet  Google Scholar 

  6. F.E.C. Culick, Boltzmann equation applied to a problem of two-phase flow. Phys. Fluids,7 (1964), 1898–1904.

    Article  MathSciNet  Google Scholar 

  7. R. Dautray and J.L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. T. 3, 1986, Chp 21.

  8. R. Di Perna and P.L. Lions, Solutions globales d’équations du type Vlasov-Poisson. Note C. R. Acad. Sci. Paris,307 Série I (1988), 655–658.

    Google Scholar 

  9. R.Di Perna and P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Inventiones Mathematicae,98 (1989), 511–547.

    Article  MathSciNet  Google Scholar 

  10. R.Di Perna and P.L. Lions and Y. Meyer,L p regularity of velocity averages. Ann. Ihp. Analyse Non lin.,8 (1991), 271–287.

    Google Scholar 

  11. D.A. Drew, Mathematical modeling of two-phase flow. Annual Rev. Fluid. Mech.,15 (1983), 261–291.

    Article  Google Scholar 

  12. R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Japan,46 (1994), 607–643.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Fujiwara and H. Morimoto, An Lr-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo, Sect I A Math.,24 (1977), 685–7.

    MATH  MathSciNet  Google Scholar 

  14. P. Gérard, Compacité par Compensation et régularité 2-microlocale. Séminaire Equations aux dérivées Partielles. Ecole Polytechnique, 1988/89.

  15. Y. Giga, Analyticity of the semigroup generated by the Stokes operator inL r spaces. Math. Z.,178 (1981), 297–329.

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Giga, Domains of fractional powers of Stokes operator inL r spaces. Arch. Rational Mech. Anal.,89 (1985), 251–265.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Giga and H. Sohr, On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo, Sect. I A Math.,36 (1989), 103–130.

    MathSciNet  Google Scholar 

  18. Y. Giga and H. Sohr, AbstractL p estimates for the Cauchy problem with applications to Navier-Stokes equations in exterior domains. J. Funct. Analysis,102 (1991), 72–94.

    Article  MATH  MathSciNet  Google Scholar 

  19. F. Golse, B. Perthame and R. Sentis, Un résultat pour les équations de transport et application au calcul de la limite de la valeur propre principale d’un opérateur de transport. Note C. R. Acad. Sci. Paris,301 Série I (1985), 341–344.

    MATH  MathSciNet  Google Scholar 

  20. C.D. Hill, Two dimensional analysis of the stability of particles sedimentation. Phys. Fluids,23(A) (1980), 667–668.

    Article  MathSciNet  Google Scholar 

  21. E. Horst, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. Math. Meth. Appl. Sci.,3 (1981), 229–248.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. Horst and R. Hunze, Weak solutions of the initial value problem for the unmodified Vlasov equations. Math. Meth. Appl. Sci.,6 (1984), 262–279.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Koch, Kinetic theory for monodisperse gas-solid suspension. Phys. Fluids,A2 (10) (1990), 1711–1723.

    Google Scholar 

  24. P.L. Lions, Global solutions of kinetic models and related questions. Lecture Notes in Math.,1551.

  25. P.L. Lions and B. Perthame, Régularité des solutions du système de Vlasov-Poisson en dimension 3. Note C. R. Acad. Sci. Paris,311, Série I (1990), 205–210.

    MATH  MathSciNet  Google Scholar 

  26. P.L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of scalar conservation law. Note C.R.Acad.Sci. Paris,312, Série I (1991), 97–102.

    MATH  MathSciNet  Google Scholar 

  27. T. Miyaka, On nonstationary solutions of the Navier-Stokes equations in exterior domains. Hiroshima Math. J.,12 (1982), 115–140.

    MathSciNet  Google Scholar 

  28. S.I. Pai, Fundamental equations of a mixture of gas and small solid particles from kinetic theory. J. Math. Phys. Sci.,7(1) (1973), 1–15.

    Google Scholar 

  29. L. Sainsaulieu, Equilibrium velocity distribution functions for a kinetic model of two-phase flows. Mathematical Models and Methods in Applied Sciences,5 (1995), 191–211.

    Article  MATH  MathSciNet  Google Scholar 

  30. V.A. Solonnikov, Estimates of solutions of nonstationary Navier-Stokes equations. J. Soviet Math.,8 (1977), 467–52.

    Article  MATH  Google Scholar 

  31. L. Tartar, Topics in Nonlinear Analysis. Publications Mathématiques d’Orsay. 78.13, Université de Paris Sud, 1978.

  32. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis. CBMS-NSF Regional Conf. Ser. in Appl. Math.,41, 1983.

  33. G.B. Wallis, One Dimentional Two-phase Flow. McGraw-Hill, N.Y., 1969.

    Google Scholar 

  34. G.Q. Wang and J.R. Ni, The kinetic theory for dilute solid/liquid two-phase flow. Int. J. Multiphase Flow,17 (1991), 273–281.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hamdache, K. Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Indust. Appl. Math. 15, 51–74 (1998). https://doi.org/10.1007/BF03167396

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167396

Key words

Navigation