Skip to main content
Log in

Energy substrates to support glutamatergic and GABAergic synaptic function: Role of glycogen, glucose and lactate

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Maintenance of glutamatergic and GABAergic activity requires a continuous supply of energy since the exocytotic processes as well as high affinity glutamate and GABA uptake and subsequent metabolism of glutamate to glutamine are energy demanding processes. The main energy substrate for the brain under normal conditions is glucose but at the cellular level,i.e., neurons and astrocytes, lactate may play an important role as well. In addition to this the possibility exists that glycogen, which functions as a glucose storage molecule and which is only present in astrocytes, could play a role not only during aglycemia but also during normoglycemia. These issues are discussed and it is concluded that both glucose and lactate are of importance for the maintenance of normal glutamatergic and GABAergic activity. However, with regard to maintenance of an adequate capacity for glutamate transport, it appears that glucose metabolism via the glycolytic pathway plays a fundamental role. Additionally, evidence is presented to support the notion that glycogen turnover may play an important role in this context. Moreover, it should be noted that the amino acid neurotransmitters can be used as metabolic substrates. This requires pyruvate recycling, a process that is discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attwell D and SB Laughlin (2001) An energy budget for signalling in the grey matter of the brain.J. Cereb. Blood Flow Metab. 21, 1133–1145.

    Article  PubMed  CAS  Google Scholar 

  • Bak LK, A Schousboe, U Sonnewald and HS Waagepetersen (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons.J. Cereb. Blood Flow Metab. 26, 1285–1297.

    Article  PubMed  CAS  Google Scholar 

  • Bak LK, HS Waagepetersen, TM Melø, A Schousboe and U Sonnewald (2007) Complex glutamate labeling from [U-13C] glucose or [U-13C]lactate in co-cultures of cerebellar neurons and astrocytes.Neurochem. Res. 32, 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Bouzier AK, R Goodwin, FM de Gannes, H Valeins, P Voisin, P Canioni and M Merle (1998) Compartmentation of lactate and glucose metabolism in C6 glioma cells. A13C and1H NMR study.J. Biol. Chem. 273, 27162–27169.

    Article  PubMed  CAS  Google Scholar 

  • Bouzier AK, E Thiaudiere, M Biran, R Rouland, P Canioni and M Merle (2000) The metabolism of [3-13C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment.J. Neurochem. 75, 480–486.

    Article  PubMed  CAS  Google Scholar 

  • Bouzier-Sore AK, P Voisin, P Canioni, PJ Magistretti and L Pellerin (2003) Lactate is a preferential oxidative energy substrate over glucose for neurons in culture.J. Cereb. Blood Flow Metab. 23, 1298–1306.

    Article  PubMed  CAS  Google Scholar 

  • Brown AM (2004) Brain glycogen re-awakened.J. Neurochem. 89, 537–552.

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, HM Sickmann, K Fosgerau, TM Lund, A Schousboe, HS Waagepetersen and BR Ransom (2005) Astrocyte glycogen metabolism is required for neural activity during aglycaemia or intense stimulation in mouse white matter.J. Neurosci. Res. 79, 64–80.

    Article  CAS  Google Scholar 

  • Cataldo AM and RD Broadwell (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes.J. Neurocytol. 15, 511–524.

    Article  PubMed  CAS  Google Scholar 

  • Cerdan S, B Kunnecke and J Seelig (1990) Cerebral metabolism of [1,2-13C2]acetate as detected byin vivo andin vitro 13C NMR.J. Biol. Chem. 265, 12916–12926.

    PubMed  CAS  Google Scholar 

  • Cruz F, M Villalba, MA Garcia-Espinosa, P Ballesteros, E Bogonez, J Sastrustegui and S Cerdan (2001) Intracellular compartmentation of pyruvate in primary cultures of cortical neurons as detected by13C NMR spectroscopy with multiple13C labels.J. Neurosci. Res. 66, 771–781.

    Article  PubMed  CAS  Google Scholar 

  • Dienel GA and NF Cruz (2004) Nutrition during brain activation: Does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought?Neurochem. Int. 45, 321–351.

    Article  PubMed  CAS  Google Scholar 

  • Drejer J and A Schousboe (1989) Selection of a pure cerebellar granule cell culture by kainate treatment.Neurochem. Res. 14, 751–754.

    Article  PubMed  CAS  Google Scholar 

  • Drejer J, OM Larsson and A Schousboe (1982) Characterization of glutamate uptake into and release from astrocytes and neurons cultured from different brain regions.Exp. Brain Res. 47, 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Drejer J, OM Larsson, E Kvamme, G Svenneby, L Hertz and A Schousboe (1985) Ontogenetic development of glutamate metabolizing enzymes in cultured cerebellar granule cells and in cerebellumin vivo.Neurochem. Res. 10, 49–62.

    Article  PubMed  CAS  Google Scholar 

  • Duarte JMN, RA Cunha and RA Carvalho (2007) Different metabolism of glutamatergic and GA Baergic compartments in superfused hippocampal slices characterized by nuclear magnetic resonance spectroscopy.Neuroscience 144, 1305–1313.

    Article  PubMed  CAS  Google Scholar 

  • Fox PT, ME Raichle, MA Mintun and C Dence (1988) Nonoxidative glucose consumption during focal physiological neural activity.Science 241, 462–464.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs ME, DG Anderson and L Hertz (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens.Glia 54, 214–222.

    Article  PubMed  Google Scholar 

  • Gundersen V, NC Danbolt, OP Ottersen and J Storm-Mathiesen (1993) Demonstration of glutamate/aspartate uptake activity in nerve endings by use of antibodies recognizing exogenous D-aspartate.Neuroscience 57, 97–111.Haberg A, H Qu, IJ Bakken, LM Sande, LR White, O Haraldseth, G Unsgard, J. Aasly and U Sonnewald (1998)In vitro andex vivo 13C-NMR spectroscopy studies of pyruvate recycling in brain.Dev. Neurosci. 20, 389–398.

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, BHJ Juurlink and S Szuchet (1985) Cell cultures, In:Handbook of Neurochemistry,Vol. 8 (Lajtha A, Ed.), (Plenum: New York, NY), pp. 603–661.

    Google Scholar 

  • Hertz L, L Peng and GA Dienel (2007) Energy metabolism in astrocytes high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.J. Cereb. Blood Flow Metab. 27, 219–249.

    Article  PubMed  CAS  Google Scholar 

  • Hyder F, AB Patel, A Gjedde, DL Rothman, KL Behar and RG Shulman (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function.J. Cereb. Blood Flow Metab. 26, 865–877.

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, T Abe, R Takaoka and N Tanahashi (2004) Fluoremetric determination of glucose utilization in neuronsin vitro andin vivo.J. Cereb Blood Flow Metab. 24, 993–1003.

    Article  PubMed  CAS  Google Scholar 

  • Kasischke KA, HD Vishwasrao, PJ Fisher, WR Zipfel and WW Webb (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis.Science 305, 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Mason GF, DL Rothman, KL Behar and RG Shulman (1992) NMR determination of the TCA cycle rate and α-ketoglutarate/glutamate exchange rate in rat brain.J. Cereb. Blood Flow Metab. 12, 434–447.

    PubMed  CAS  Google Scholar 

  • McKenna MC, HS Waagepetersen, A Schousboe and U Sonnewald (2006) Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents current evidence and pharmacological tools.Biochem. Pharmacol. 71, 399–306.

    Article  PubMed  CAS  Google Scholar 

  • Olstad E, H Qu and U Sonnewald (2007a) Glutamate is preferred over glutamine for intermediary metabolism in cultured cerebellar neurons.J. Cereb. Blood Flow Metab. 27, 811–820.

    PubMed  CAS  Google Scholar 

  • Olstad E, GM Olsen, H Qu and U Sonnewald (2007b) Pyruvate recycling in cultured neurons from cerebellum.J. Neurosci. Res. 2007 Feb 15 [Epub ahead of print].

  • Pellerin L (2003) Lactate as a pivoltal element in neuron-glia metabolic cooperation.Neurochem. Int. 43, 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L and PJ Magistretti (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis a mechanism coupling neuronal activity to glucose utilization.Proc. Natl. Acad. Sci. USA 15, 10625–10629.

    Article  Google Scholar 

  • Pellerin L, AK Bouzier-Sore, A Aubert, S Serres, M Merle, R Costalat and PJ Magistretti (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update.Glia 55, 1251–1262.

    Article  PubMed  Google Scholar 

  • Peng L, X Zhang and L Hertz (1994) High extracellular potassium concentrations stimulate oxidative metabolism in a glutamatergic neuronal culture and glycolysis in cultured astrocytes but have no stimulatory effect in a GABAergic neuronal culture.Brain Res. 663, 168–172.

    Article  PubMed  CAS  Google Scholar 

  • Qu H, A Haberg, O Haraldseth, G Unsgard and U Sonnewald (2003)13C MR Spectroscopy study of lactate as substrate for rat brain.Dev. Neurosci. 22, 429–436.

    Article  Google Scholar 

  • Schousboe A and HS Waagepetersen (2005) Role of astrocytes in glutamate homeostasis: implications for excitotoxicity.Neurotox. Res. 8, 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A, E Meier, J Drejer and L Hertz (1989) Preparation of primary cultures of mouse (rat) cerebellar granule cells, In:A Dissection and Tissue Culture. Manual of the Nervous System (Shahar A, J De Vellis, A Vernadakis and B Haber, Eds.), (Alan R Liss: New York, NY), pp. 203–206.

    Google Scholar 

  • Schousboe A, U Sonnewald and HS Waagepetersen (2003) Differential roles of alanine in GABAergic and glutamatergic neurons.Neurochem. Int. 43, 311–315.

    Article  PubMed  CAS  Google Scholar 

  • Schurr A (2006) Lactate: the ultimate cerebral oxidative energy substrateJ. Cereb. Blood Flow Metab. 26, 142–152.

    Article  PubMed  CAS  Google Scholar 

  • Schurr A, CA West and BM Rigor (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation.Science 240, 1326–1328.

    Article  PubMed  CAS  Google Scholar 

  • Shank RP, GS Bennett, SO Freytag and GL Campbell (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools.Brain Res. 329, 364–367.

    Article  PubMed  CAS  Google Scholar 

  • Schulman RG, F Hyder and DL Rothman (2001) Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging.Proc. Natl. Acad. Sci. USA 98, 6417–6422.

    Article  Google Scholar 

  • Sickmann HM, LK Bak, A Schousboe, SD Bouman and HS Waagepetersen (2007) A functioning glycolysis is important for maintenance of glutamate transport in cultured astrocytes.J. Neurochem. 102, Suppl. 1, 285.

    Google Scholar 

  • Sonnewald U, N Westergaard, P Jones, A Taylor, HS Bachelard and A Schousboe (1996) Metabolism of [U-13C5]glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling.J. Neurochem. 67, 2566–2572.

    Article  PubMed  CAS  Google Scholar 

  • Takata T, T Sakurai, B Yang, K Yokono and Y Okada (2001) Effect of lactate on the synaptic potential, energy metabolism, calcium homeostasis and extracellular glutamate concentration in the dentate gyrus of the hippocampus from guinea-pig.Neuroscience 104, 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, IJ Bakken, OM Larsson, U Sonnewald and A Schousboe (1998a) Metabolism of lactate in cultured GABAergic neurons studied by13C-NMR spectroscopy.J. Cereb. Blood Flow Metab. 18, 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, IJ Bakken, OM Larsson, U Sonnewald and A Schousboe (1998b) Comparison of lactate and glucose metabolism in cultured neocortical neurons and astrocytes using13C NMR spectroscopy.Dev. Neurosci. 20, 310–320.

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, U Sonnewald, OM Larsson and A Schousboe (2001) Multiple compartments with different metabolic characteristics are involved in biosynthesis, of intracellular and released glutamine and citrate in astrocytes.Glia 35, 246–252.

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, H Qu, L Hertz, U Sonnewald and A Schousboe (2002) Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons.Neurochem. Res. 27, 1431–1437.

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, H Qu, U Sonnewald, K Shimamoto and A Schousboe (2005a) Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons.Neurochem. Int. 47, 92–102.

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, HM Sickmann, K Fosgerau and A Schousboe (2005b) Role of glycogen in neurotransmission.J. Neurochem. 94 Suppl. 1, 65.

    Google Scholar 

  • Wender R, AM Brown, R Fern, RA Swanson, K Farrell and BR Ransom (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter.J. Neurosci. 20, 6804–6810.

    PubMed  CAS  Google Scholar 

  • Yu ACH, J Drejer, L Hertz and A Schousboe (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons.J. Neurochem. 41, 1484–1487.

    Article  PubMed  CAS  Google Scholar 

  • Yu AC, E Hertz and L Hertz (1984) Alterations in uptake and release rates for GABA, glutamate, and glutamine during biochemical maturation, of highly purified cultures of cerebral cortical neurons, a GABAergic preparation.J. Neurochem. 42, 951–960.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Schousboe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schousboe, A., Bak, L.K., Sickmann, H.M. et al. Energy substrates to support glutamatergic and GABAergic synaptic function: Role of glycogen, glucose and lactate. neurotox res 12, 263–268 (2007). https://doi.org/10.1007/BF03033909

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033909

Keywords

Navigation