Skip to main content
Log in

Dietary and genetic compromise in folate availability reduces acetylcholine, cognitive performance and increases aggression: Critical role of S-adenosyl methionine

  • Published:
The Journal of Nutrition Health and Aging

Abstract

Folate deficiency has been associated with age-related neurodegeneration. One direct consequence of folate deficiency is a decline in the major methyl donor, S-adenosyl methionine (SAM). We demonstrate herein that pro-oxidant stress and dietary folate deficiency decreased levels of acetylcholine and impaired cognitive performance to various degrees in normal adult mice (9–12months of age, adult mice heterozygously lacking 5’,10’-methylene tetrahydrofolate reductase, homozygously lacking apolipoprotein E, or expressing human ApoE2, E3 or E4, and aged (2–2.5 year old) normal mice. Dietary supplementation with SAM in the absence of folate restored acetylcholine levels and cognitive performance to respective levels observed in the presence of folate. Increased aggressive behavior was observed among some but not all genotypes when maintained on the deficient diet, and was eliminated in all cases supplementation with SAM. Folate deficiency decreased levels of choline and N-methyl nicotinamine, while dietary supplementation with SAM increased methylation of nicotinamide to generate N-methyl nicotinamide and restored choline levels within brain tissue. Since N-methyl nicotinamide inhibits choline transport out of the central nervous system, and choline is utilized as an alternative methyl donor, these latter findings suggest that SAM may maintain acetylcholine levels in part by maintaining availability of choline. These findings suggest that dietary supplementation with SAM represents a useful therapeutic approach for age-related neurodegeneration which may augment pharmacological approaches to maintain acetylcholine levels, in particular during dietary or genetic compromise in folate usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selhub J, Bagley LC, Miller J, Rosenberg JH (2000) B vitamins, homocysteine and neurocognitive function in the elderly. Am J Clin Nutr 71: 614S-620S.

    PubMed  CAS  Google Scholar 

  2. MM and Shea TB (2003) Folate and Homocysteine in Neural Plasticity and Neurodegenerative Disorders. Trends in Neurosciences 26: 137–146.

    Article  Google Scholar 

  3. Morrison, L.D. (1996) Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem. 67: 1328–1331.

    Article  PubMed  CAS  Google Scholar 

  4. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino BR, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. New Eng J Med 346: 476–483.

    Article  PubMed  CAS  Google Scholar 

  5. Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L and Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20: 6920–6926.

    PubMed  CAS  Google Scholar 

  6. Kruman II, Kumaravel TS, Lohani A Pedersen WA, Roy G. Cutler RG, Yuri Kruman, Norman Haughey N, Lee J, Michele Evans M and Mattson MP (2002) Folic Acid Deficiency and Homocysteine Impair DNA Repair in Hippocampal Neurons and Sensitize Them to Amyloid Toxicity in Experimental Models of Alzheimer’s Disease J. Neurosci. 22: 1752–1762.

    PubMed  CAS  Google Scholar 

  7. Ho PI, Collins SC, Dhitavat S, Ortiz D, Ashline D, Rogers E, Shea TB. (2001) Homocysteine potentiates beta-amyloid neurotoxicity: role of oxidative stress. J Neurochem. Jul;78(2): 249–53.

    Article  PubMed  CAS  Google Scholar 

  8. Ho PI, Ortiz D, Rogers E and Shea TB (2002) Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage. J Neurosci Res: 70: 694–702.

    Article  PubMed  CAS  Google Scholar 

  9. Ho P, Ashline D, Dhitavat S, Collins S, Rogers E And Shea TB (2003). Folate Deprivation Induces Neurodegeneration: Roles Of Oxidative Stress And Increased Homocysteine. Neurobiol Dis 14: 32–42.

    Article  PubMed  CAS  Google Scholar 

  10. White AR, Huang X, Jobling MF, Barrow CJ, Beyreuther K, Masters CL, Bush AI, Cappai R (2001) Homocysteine potentiates copper-and amyloid beta peptide-mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer’s-type neurodegenerative pathways. J Neurochem. 76: 1509–1520

    Article  PubMed  CAS  Google Scholar 

  11. Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S (2005) S-adenosylmethionine/ homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci. 28: 195–204.

    Article  PubMed  CAS  Google Scholar 

  12. Scarpa S, Fuso A, D’Anselmi F and Cavallaro RA (2003) Presenilin 1 gene silencing by S-adenosylmethionine. FEBS Lett 541: 145–148

    Article  PubMed  CAS  Google Scholar 

  13. Kamboh MI. Apolipoprotein E polymorphism and susceptibility to Alzheimer’s disease. Hum Biol 2004; 67: 195–215.

    Google Scholar 

  14. Tchantchou F, Graves M, Ortiz D and Shea TB (2005a) S-adenosyl methionine: a link between nutritional and genetic risk factors in Alzheimer’s disease. J Nutri Health Aging: in press

  15. Anello G, Gueant-Rodriguez RM, Bosco P, Gueant JL, Romano A, Namour B, Spada R, Caraci F, Pourie G, Daval JL and Ferri R (2004) Homocysteine an methylenetetrahydrofolate reductase polymorphism in Alzheimer’s disease. Neuroreport. 15: 859–861.

    Article  PubMed  CAS  Google Scholar 

  16. Regland B, Blennow K Germgard T, Koch-Schmidt AC, Gottfries CG. The role of the polymorphic genes apolipoprotein E and methylene-tetrahydrofolate reductase in the development of dementia of the Alzheimer type. Dement Geriatr Cogn Disord 1999; 10: 245–251.

    Article  PubMed  CAS  Google Scholar 

  17. Wang B, Jin F, Kan R, Ji S, Zhang C, Lu Z, Zheng C, Yang Z, Wang L (2005) Association of MTHFR gene polymorphism C677T with susceptibility to late-onset Alzheimer’s disease. J Mol Neurosci. 27: 23–27.

    Article  PubMed  Google Scholar 

  18. Bottiglieri T, Godfrey P, Flynn T, Carney MW, Toone BK, Reynolds EH (1990) Cerebrospinal fluid S-adenosylmethionine in depression and dementia: effects of treatment with parenteral and oral S-adenosylmethionine. J Neurol Neurosurg Psychiatry. 53: 1096–1098.

    Article  PubMed  CAS  Google Scholar 

  19. Kennedy BP, Bottiglieri T, Arning E, Ziegler MG, Hansen LA, Masliah E. (2004) Elevated S-adenosylhomocysteine in Alzheimer brain: influence on methyltransferases and cognitive function. J Neural Transm. 111: 547–111567

    Article  PubMed  CAS  Google Scholar 

  20. Mihalick SM, Ortiz D, Kumar R, Rogers E and Shea TB (2004) Folate and vitamin E deficiency impair cognitive performance in mice subjected to oxidative stress: differential impact on normal mice and mice lacking apolipoprotein E. Neuromol Med 4: 197–202.

    Article  Google Scholar 

  21. Albert JE, Miscoulon D, Nierenberg AA, Fava M (2000) Nutrition and depression: focus on folate. Nutrition 16: 544–581.

    Article  Google Scholar 

  22. Miscouloun D and Fava M (2002) Role of S-adenosyl-L-methionine in the treatment of depression:a review of the evidence Am J Clin Nutr 76: 1158S-61S.

    Google Scholar 

  23. Freeman GB, Gibson GE.(1988) Dopamine, acetylcholine, and glutamate interactions in aging. Behavioral and neurochemical correlates. Ann N Y Acad Sci. 515: 191–202.

    Article  PubMed  CAS  Google Scholar 

  24. Fu AL, Li Q, Dong ZH, Huang SJ, Wang YX, Sun MJ (2004) Alternative therapy of Alzheimer’s disease via supplementation with choline acetyltransferase. Neurosci Lett. 368: 258–262

    Article  PubMed  CAS  Google Scholar 

  25. Giacobini E.(2003) Cholinergic function and Alzheimer’s disease. Int J Geriatr Psychiatry. 18(Suppl 1): S1-S5

    Article  PubMed  Google Scholar 

  26. Shen ZX (2004) Brain cholinesterases: III. Future perspectives of AD research and clinical practice. Med Hypotheses. 63: 298–307.

    Article  PubMed  CAS  Google Scholar 

  27. Terry AV and Buccafusco JJ. (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development J Pharmacol Exp Ther. 306: 821–827.

    Article  PubMed  CAS  Google Scholar 

  28. Zeisel SH (2000). Choline: needed for normal development of memory. J Am Coll Nutr. 19: 528S-531S.

    PubMed  CAS  Google Scholar 

  29. Zeisel SH (2000). Choline: an essential nutrient for humans. Nutrition. 16: 669–671.

    Article  PubMed  CAS  Google Scholar 

  30. Higgins JP, Flicker L (2003) Lecithin for dementia and cognitive impairment. Cochrane Database Syst Rev.3: CD001015.

    PubMed  Google Scholar 

  31. McDaniel MA, Maier SF, Einstein GO. (2003) “Brain-specific” nutrients: a memory cure? Nutrition. 19: 955–956.

    Article  CAS  Google Scholar 

  32. Kim, Y.-I., Miller, J. W., da Costa, K.-A., Nadeau, M., Smith, D., Selhub, J., Zeisel, S. H., Mason, J. B. (1994) Severe folate deficiency causes secondary depletion of choline and phosphocholine in rat liver. J. Nutr. 124: 2197–2203

    PubMed  CAS  Google Scholar 

  33. Williams AC, Ramsden DB. (2005) Nicotinamide homeostasis: a xenobiotic pathway that is key to development and degenerative diseases. Med Hypotheses. 2005;65(2): 353–62.

    Article  PubMed  CAS  Google Scholar 

  34. Erb C and Klein J (1998) Enhancement of brain choline levels by nicotinamide: mechanism of action. Neurosci Letters. 249: 111–114.

    Article  CAS  Google Scholar 

  35. Galletti P, De Rosa M, Nappi MA, Pontoni G, del Piano L, Salluzzo A, Zappia V. (1985) Transport and metabolism of double-labelled CDPcholine in mammalian tissues. Biochem Pharmacol. 1985 Dec 1;34(23): 4121–30.

    Article  PubMed  CAS  Google Scholar 

  36. Kohlmeier M, da Costa KA, Fischer LM, Zeisel SH (2005) Genetic variation of folate-mediated one-carbon transfer pathway predicts susceptibility to choline deficiency in humans. Proc Natl Acad Sci U S A. 102: 16025–16030.

    Article  PubMed  CAS  Google Scholar 

  37. Schwahn BC, Chen Z, Laryea MD, Wendel U, Lussier-Cacan S, Genest J Jr, Mar MH, Zeisel SH, Castro C, Garrow T and Rozen R (2003) Homocysteine-betaine interactions in a murine model of 5,10-methylenetetrahydrofolate reductase deficiency. FASEB J.:512–514.

  38. Tchantchou F, Chan A, Kifle L, Ortiz D and Shea TB (2005b) Apple juice concentrate prevents oxidative damage and cognitive decline in aged mice. J Alz Dis: in press.

  39. Chen, Z., Karaplis, A. C., Ackerman, S. L., Pogribny, I. P., Melnyk, S., Lussier-Cacan, S., Chen, M. F., Pai, A., John, S. W. M., Smith, R. S., et al. (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum. Mol. Genet 10, 433–443

    Article  PubMed  CAS  Google Scholar 

  40. Shea TB and Rogers E (2002) Folate quenches oxidative damage in brains of apolipoprotein E-deficient mice: augmentation by vitamin E. Mol Brain Res 108: 1–6.

    Article  PubMed  CAS  Google Scholar 

  41. Tchantchou F, Graves M, Ortiz D and Shea TB (2005a) S-adenosyl methionine: a link between nutritional and genetic risk factors in Alzheimer’s disease. J Nutri Health Aging: in press

  42. Clark B, Halpern R, Smith R (1975) A fluorimetric methods for quantitation in the picamole range of N-Methylnicotinamide and Nicotinamide in serum. Anal Biochem. 68: 54–61.

    Article  PubMed  CAS  Google Scholar 

  43. Chisty M, Reichel A, Abbott NJ and Begley DJ (2002) S-adenosylmethionine is substrate for carrier-mediate transport at the blood-brain barrier in vitro. Brain Res 942: 46–50.

    Article  Google Scholar 

  44. McCaddon A, Kelly C. Alzheimer’s disease: a cobalaminergic hypothesis. Med.Hypotheses 1992;37(3): 161–165.

    Article  PubMed  CAS  Google Scholar 

  45. Tchantchou F, Graves M, Ortiz D, Rogers E and Shea TB (2004) Dietary supplementation with 3-deaza adenosine, N-acetyl cysteine, and S-adenosyl methionine provide neuroprotection against multiple consequences of vitamin deficiency and oxidative challenge: relevance to age-related neurodegeneration. Neuromolecular Med. 2004;6(2–3): 93–103.

    Article  PubMed  CAS  Google Scholar 

  46. Smolkova B, Dusinska M, Raslova K, Barancokova M, Kazimirova A, Horska A, Supustova V and Collins A (2004) Folate levels determine effect of antioxidant supplementation on micronuclei in subjects with cardiovascular risk. Mutagenesis 19: 469–476.

    Article  PubMed  CAS  Google Scholar 

  47. Troen A (2005) The central nervous system in animal models of hyperhomocysteinemia. Prog Neuro-Psychopharm Biol Psychia 29: 1140–1151.

    Article  CAS  Google Scholar 

  48. Albert JE, Miscoulon D, Nierenberg AA, Fava M (2000) Nutrition and depression: focus on folate. Nutrition 16: 544–581.

    Article  Google Scholar 

  49. Miscouloun D and Fava M (2002) Role of S-adenosyl-L-methionine in the treatment of depression:a review of the evidence Am J Clin Nutr 76: 1158S-61S.

    Google Scholar 

  50. Ricceri L, Minghetti L, Moles A, Popoli P, Confaloni A, De Simone R, Piscopo P, Scattoni ML, di Luca M, Calamandrei G. (2004) Cognitive and neurological deficits induced by early and prolonged basal forebrain cholinergic hypofunction in rats. Exp Neurol. 189: 162–172

    Article  PubMed  CAS  Google Scholar 

  51. Carter J and Lippa CF (2001) Beta-amyloid, neuronal death and Alzheimer’s disease. Curr Mol Med. 1: 733–737.

    Article  PubMed  CAS  Google Scholar 

  52. Savonenko AV, Yu GM, Price DL, Borchelt DR and Markowska (2003) Normal cognitive behavior in two distinct congenic lines of transgenic mice hyperexpressing mutant APPswe. Neurobiol Aging 12: 194–211.

    CAS  Google Scholar 

  53. Aucoin JS, Jiang P, Aznavour N, Tong XK, Buttini M, Descarries L, Hamel E. (2005) Selective cholinergic denervation, independent from oxidative stress, in a mouse model of Alzheimer’s disease. Neurosci 132: 73–86.

    Article  CAS  Google Scholar 

  54. Spowart-Manning L, van der Staay FJ (2004) The T-maze continuous alternation task for assessing the effects of putative cognition enhancers in the mouse. Behav Brain Res 151: 37–46.

    Article  PubMed  CAS  Google Scholar 

  55. Bottiglieri T, Hyland K, Reynolds EH. (1994) The clinical potential of ademetionine (S-adenosylmethionine) in neurological disorders. Drugs 1994 Aug;48: 137–152.

    Article  PubMed  CAS  Google Scholar 

  56. Bressa GM (1994) S-adenosyl-L-methionine (SAMe) as antidepressant: meta-analysis of clinical studies. Acta Neurol Scand 89: 7–14.

    Article  Google Scholar 

  57. Garcia-Alloza M, Gil-Bea FJ, Diez-Ariza M, Chen CP, Francis PT, Lasheras B, Ramirez MJ.(2005) Cholinergic-serotonergic imbalance contributes to cognitive and behavioral symptoms in Alzheimer’s disease. Neuropsychologia. 43: 442–449.

    Article  PubMed  CAS  Google Scholar 

  58. Zarros ACh, Kalopita KS, Tsakiris ST(2005) Serotoninergic impairment and aggressive behavior in Alzheimer’s disease. Acta Neurobiol Exp. 65: 277–286

    Google Scholar 

  59. Gauthier S, Feldman H, Hecker J, Vellas B, Ames D, Subbiah P, Whalen E, Emir B; Donepezil MSAD Study Investigators Group. (2002) Efficacy of donepezil on behavioral symptoms in patients with moderate to severe Alzheimer’s disease. Int Psychogeriatr. 14: 389–404.

    Article  PubMed  Google Scholar 

  60. Craig D, Hart DJ, McCool K, McIlroy SP, Passmore AP (2004) Apolipoprotein E e4 allele influences aggressive behaviour in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 75: 1327–1330.

    Article  PubMed  CAS  Google Scholar 

  61. Engelborghs S, Dermaut B, Marien P, Symons A, Vloeberghs E, Maertens K, Somers N, Goeman J, Rademakers R, Van den Broeck M, Pickut B, Cruts M, Van Broeckhoven C., De Deyn PP (2006) Dose dependent effect of APO epsilon4 on behavioral symptoms in frontal lobe dementia. Neurobiol Aging. 27: 285–292.

    Article  PubMed  CAS  Google Scholar 

  62. Ramassamy C., Averill D, Beffert L., Throux L., Lussier-Cacan S., Cohn J.S., Christen Y., Schoofs J. and Davignon J. (1999) Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer’s disease is related to the apolipoprotein E genotype. Free Rad Biol Med 27, 544–553.

    Article  PubMed  CAS  Google Scholar 

  63. Ramassamy C., Kryzwkowski P., Averill D., Lussier-Cacan S., Throux L., Christen Y., Davignon J. and Poirier J., (2001). Impact of apoE deficiency on oxidative insults and antioxidant levels in the brain. Mol. Brain Res. 86: 76–83

    Article  PubMed  CAS  Google Scholar 

  64. Crutcher KA. (2004) Apolipoprotein E is a prime suspect, not just an accomplice, in Alzheimer’s disease. J Mol Neurosci. 2004;23(3): 181–8.

    Article  PubMed  CAS  Google Scholar 

  65. Ashford JW (2004) APOE genotype effects on Alzheimer’s disease onset and epidemiology. J Mol Neurosci. 2004;23(3): 157–65.

    Article  PubMed  CAS  Google Scholar 

  66. Roses AD (1997) Apolipoprotein E: a gene with complex biological interactions in the aging brain. Neurobiol Dis 4: 170–185.

    Article  PubMed  CAS  Google Scholar 

  67. Fagan AM, Watson M, Parsadanian M, Bales KR, Paul SM and Holtzman DM (2002) Human and murine ApoE markedly influence Abeta metabolism both prior and subsequent to plaque formation in a mouse model of Alzheimer’s disease. Neurobiol Dis 9: 305–318.

    Article  PubMed  CAS  Google Scholar 

  68. Botto LD and Yang Q (2000) 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151: 862–867.

    PubMed  CAS  Google Scholar 

  69. Frosst P et al. (1995) Identification of a candidate genetic risk factor for vascular disease: a common mutation at the methylenetetrahydrofolate reductase locus. Nat Genet 10: 111–113.

    Article  PubMed  CAS  Google Scholar 

  70. Shields, D.C. et al., (1999) The “thermolabile” variant of methylenetetrahydrofolate reductase and neural tube defects: An evaluation of genetic risk and the relative importance of the genotypes of the embryo and the mother. Am J Hum Genet. 64, 1045–1055.

    Article  PubMed  CAS  Google Scholar 

  71. Arrula VR, von Zuben PM, Chaiparini LC, Annichino-Bizzachi JM, Costa FF (1997) The mutation Ala677-Val in the methylene tetrahydrofolate reductase gene: a risk factor for arterial disease and venous thrombosis. Thrombo Haemost 77: 818–821.

    Google Scholar 

  72. Reyes-Engel A, Munoz E, Gaitan MJ, Fabre E, Gallo M, Dieguez JL, Ruiz M, Morell M. (2002) Implications on human fertility of the 677C→T and 1298A→C polymorphisms of the MTHFR gene: consequences of a possible genetic selection. Mol Hum Reprod 8: 952–957.

    Article  PubMed  CAS  Google Scholar 

  73. Banerjee RV and Matthews RG (1990) Cobalamin-dependent methionine synthase. FASEB 4: 1450–1459

    CAS  Google Scholar 

  74. Djurhuus R, Svardal AM and Ueland PM (1989) Differential efffects on growth, homocysteine and related compounds of two inhibitors of S-adenosylhomocysteine catabolism. Cancer Res 49: 124–130.

    Google Scholar 

  75. Dayal S, Bottiglieri T, Arning E, Maeda N, Malinow MR, Sigmund CD, Heistad DD, Faraci FM, Lentz SR. (2001) Endothelial dysfunction and elevation of S-adenosylhomocysteine in cystathionine beta-synthase-deficient mice. Circ Res 88: 1203–1209.

    Article  PubMed  CAS  Google Scholar 

  76. Holtzman DM (2004) In vivo effects of ApoE and clusterin on amyloid-beta metabolism and neuropathology. Neurobiol Dis 23: 247–245.

    CAS  Google Scholar 

  77. Minkeviciene R, Banerjee P, Tanila H (2004) Memantine improves spatial learning in a transgenic mouse model of Alzheimer’s disease. J Pharmacol Exp Ther. 2004 Nov;311(2): 677–82

    Article  PubMed  CAS  Google Scholar 

  78. Popovic M, Caballero-Bleda M, Popovic N, Bokonjic D, Dobric S (1997) Neuroprotective effect of chronic verapamil treatment on cognitive and noncognitive deficits in an experimental Alzheimer’s disease in rats Int J Neurosci. 92: 79–93

    Article  PubMed  CAS  Google Scholar 

  79. Arsland D (1998) Drug treatment of emotional and cognitive dysfunction in dementia. Tidsskr Nor Laegeforen. 118: 560–565

    PubMed  CAS  Google Scholar 

  80. Moran M, Walsh C, Lynch A, Coen RF, Coakley D, Lawlor BA (2004) Syndromes of behavioural and psychological symptoms in mild Alzheimer’s disease. Int J Geriatr Psychiatry. 19: 359–364.

    Article  PubMed  Google Scholar 

  81. Rainer MK, Masching AJ, Ertl MG, Kraxberger E, Haushofer M (2001) Effect of risperidone on behavioral and psychological symptoms and cognitive function in dementia. J Clin Psychiatry. 62: 894–900.

    PubMed  CAS  Google Scholar 

  82. Russo-Neustadt A, Cotman CW (1997) Adrenergic receptors in Alzheimer’s disease brain: selective increases in the cerebella of aggressive patients. J Neurosci. 17: 5573–55780.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Shea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, A., Tchantchou, F., Graves, V. et al. Dietary and genetic compromise in folate availability reduces acetylcholine, cognitive performance and increases aggression: Critical role of S-adenosyl methionine. J Nutr Health Aging 12, 252–261 (2008). https://doi.org/10.1007/BF02982630

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982630

Keywords

Navigation