Skip to main content
Log in

Protective effects of EGCG on UVB-induced damage in living skin equivalents

  • Articles
  • Drug Design
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In this study, we evaluate the effects of (−)-epigallocatechin-3-gallate (EGCG) on ultraviolet B (UVB)-irradiated living skin equivalents (LSEs). Histologically, UVB irradiation induced thinning of the LSE epidermis, whereas EGCG treatment led to thickening of the epidermis. Moreover, EGCG treatment protected LSEs against damage and breakdown caused by UVB exposure. Immunohistochemically, UVB-exposed LSEs expressed p53, Fas, and 8-hydroxy-deoxyguanosine (8-OHdG), all of which are associated with apoptosis. However, EGCG treatment reduced the levels of UVB-induced apoptotic markers in the LSEs. In order to determine the signaling pathways induced by UVB, Western blot analysis was performed for both c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which are associated with UVB-induced oxidative stress. UVB activated JNK in the epidermis and dermis of the LSEs, and EGCG treatment reduced the UVB-induced phosphorylation of JNK. In addition, p38 MAPK was also found to have increased in the UVB-exposed LSEs. Also, EGCG reduced levels of the phosphorylation of UVB-induced p38 MAPK. In conclusion, pretreatment with EGCG protects against UVB irradiationvia the suppression of JNK and p38 MAPK activation. Our results suggest that EGCG may be useful in the prevention of UVB-induced human skin damage, and LSEs may constitute a potential substitute for animal and human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, N. U., Ueda, M., Nikaido, O., Osawa, T., and Ichihashi, M., High levels of 8-hydroxy-2′-deoxyguanosine appear in normal human epidermis after a single dose of ultraviolet radiation.Br. J. Dermatol., 140, 226–231 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Assefa, Z., Garmyn, M., Bouillon, R., Merlevede, W., Vandenheede, J. R., and Agostinis, P., Differential stimulation of ERK and JNK activities by ultraviolet B irradiation and epidermal growth factor in human keratinocytes.J. Invest. Dermatol., 108, 886–891 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Auger, F. A., Lopez Valle, C. A., Guignard, R., Tremblay, N., Noel, B., Goulet, F., and Germain, L., Skin equivalent produced with human collagen.In Vitro Cell Dev. Biol. Anim. 31, 432–439 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Bell, E., Ivarsson, B., and Merrill, C., Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potentialin vitro.Proc. Natl. Acad. Sci. U.S.A., 76, 1274–1278 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Buschmann, T., Potapova, O., Bar-Shira, A., Ivanov, V. N., Fuchs, S. Y., Henderson, S., Fried, V. A., Minamoto, T., Alarcon-Vargas, D., Pincus, M. R., Gaarde, W. A., Holbrook, N. J., Shiloh, Y., and Ronai, Z., Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress.Mol. Cell Biol., 21, 2743–2754 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Casasco, A., Casasco, M., Zerbinati, N., Icaro Cornaglia, A., and Calligaro, A., Cell proliferation and differentiation in a model of human skin equivalent.Anat. Rec., 264, 261–272 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Chung, J. H., Han, J. H., Hwang, E. J., Seo, J. Y., Cho, K. H., Kim, K. H., Youn, J. I., and Eun, H. C., Dual mechanisms of green tea extract (EGCG)-induced cell survival in human epidermal keratinocytes.FASEB J., 17, 1913–1915 (2003).

    PubMed  CAS  Google Scholar 

  • Decraene, D., Agostinis, P., Pupe, A., de Haes, P., and Garmyn, M., Acute response of human skin to solar radiation: regulation and function of the p53 protein.J. Photochem. Photobiol. B., 63, 78–83 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Decraene, D., Smaers, K., Gan, D., Mammone, T., Matsui, M., Maes, D., Declercq, L., and Garmyn, M., A synthetic superoxide dismutase/catalase mimetic (EUK-134) inhibits membrane-damage-induced activation of mitogen-activated protein kinase pathways and reduces p53 accumulation in ultraviolet B-exposed primary human keratinocytes.J. Invest. Dermatol., 122, 484–491 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Gensler, H. L., Timmermann, B. N., Valcic, S., Wachter, G. A., Dorr, R., Dvorakova, D., and Alberts, D. S., Prevention of photocarcinogenesis by topical administration of pure epigallocatechin gallate isolated from green tea.Nutr. Cancer, 26, 325–335 (1996).

    PubMed  CAS  Google Scholar 

  • Hattori, Y., Nishigori, C., Tanaka, T., Uchida, K., Nikaido, O., Osawa, T., Hiai, H., Imamura, S., and Toyokuni, S., 8-Hydroxy-2′-deoxyguanosine is increased in epidermal cells of hairless mice after chronic ultraviolet B exposure.J. Invest. Dermatol., 107, 733–737 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M. D., Weil, M., and Raff, M. C., Programmed cell death in animal development.Cell, 88, 347–354 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kasai, H., and Nishimura, S., Hydroxylation of deoxy guanosine at the C-8 position by polyphenols and aminophenols in the presence of hydrogen peroxide and ferric ion.Gann, 75, 565–566 (1984).

    PubMed  CAS  Google Scholar 

  • Katiyar, S. K., Afaq, F., Azizuddin, K., and Mukhtar, H., Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (−)-epigallocatechin-3-gallate.Toxicol. Appl. Pharmacol., 176, 110–117 (2001a).

    Article  PubMed  CAS  Google Scholar 

  • Katiyar, S. K., Afaq, F., Perez, A., and Mukhtar, H., Green tea polyphenol (−)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress.Carcinogenesis, 22, 287–294 (2001b).

    Article  PubMed  CAS  Google Scholar 

  • Katiyar, S. K., Ahmad, N., and Mukhtar, H., Green tea and skin.Arch. Dermatol., 136, 989–994 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kraemer, K. H., Sunlight and skin cancer: another link revealed.Proc. Natl. Acad. Sci. U. S. A., 94, 11–4 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kulms, D., Zeise, E., Poppelmann, B., and Schwarz, T., DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation-induced apoptosis in an essential and independent way.Oncogene, 21, 5844–5851 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kuo, P. L., and Lin, C. C., Green tea constituent (−)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fasmediated pathways.J. Biomed. Sci., 10, 219–227 (2003).

    PubMed  CAS  Google Scholar 

  • Lu, Y. P., Lou, Y. R., Xie, J. G., Peng, Q. Y., Liao, J., Yang, C. S., Huang, M. T., and Conney, A. H., Topical applications of caffeine or (−)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice.Proc. Natl. Acad. Sci. U. S. A., 99, 12455–12460 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Mittal, A., Piyathilake, C., Hara, Y., and Katiyar, S. K., Exceptionally high protection of photocarcinogenesis by topical application of (−)-epigallocatechin-3-gallate in hydrophilic cream in SKH-1 hairless mouse model: relationship to inhibition of UVB-induced global DNA hypomethylation.Neoplasia, 5, 555–565 (2003).

    PubMed  CAS  Google Scholar 

  • Nagata, S., Fas and Fas ligand: a death factor and its receptor.Adv. Immunol., 57, 129–144 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Nagata, S., and Golstein, P., The Fas death factor.Science, 267, 1449–1456 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Nanjo, F., Mori, M., Goto, K., and Hara, Y., Radical scavenging activity of tea catechins and their related compounds.Biosci. Biotechnol. Biochem., 63, 1621–1623 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Naylor, M. F., Erythema, skin cancer risk, and sunscreens.Arch. Dermatol., 133, 373–375 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Nishigori, C., Hattori, Y., and Toyokuni, S., Role of reactive oxygen species in skin carcinogenesis,Antioxid. Redox. Signal, 6, 561–570 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Nishigori, C., Wang, S., Miyakoshi, J., Sato, M., Tsukada, T., Yagi, T., Imamura, S., and Takebe, H., Mutations in ras genes in cells cultured from mouse skin tumors induced by ultraviolet irradiation.Proc. Natl. Acad. Sci. U. S. A., 91, 7189–7193 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Oda, K., Arakawa, H., Tanaka, T, Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y., and Taya, Y., p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53,Cell, 102, 849–862 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Polakowska, R. R., Piacentini, M., Bartlett, R., Goldsmith, L. A., and Haake, A. R., Apoptosis in human skin development: morphogenesis, periderm, and stem cells,Dev. Dyn., 199, 176–188 (1994).

    PubMed  CAS  Google Scholar 

  • Regnier, M., Asselineau, D., and Lenoir, M. C., Human epidermis reconstructed on dermal substratesin vitro: an alternative to animals in skin pharmacology.Skin Pharmacol., 3, 70–85 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Rheinwald, J. G., and Green, H., Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells.Cell., 6, 331–343 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z. Y., Agarwal, R., Bickers, D. R., and Mukhtar, H., Protection against ultraviolet B radiation-induced photocarcinogenesis in hairless mice by green tea polyphenols.Carcinogenesis, 12, 1527–1530 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z. Y., Huang, M. T., Ferraro, T., Wong, C. Q., Lou, Y. R., Reuhl, K., Iatropoulos, M., Yang, C. S., and Conney, A. H., Inhibitory effect of green tea in the drinking water on tumorigenesis by ultraviolet light and 12-O-tetradecanoylphorbol-13-acetate in the skin of SKH-1 mice.Cancer Res., 52, 1162–1170 (1992).

    PubMed  CAS  Google Scholar 

  • Wei, H., Zhang, X., Zhao, J. F., Wang, Z. Y., Bickers, D., and Lebwohl, M., Scavenging of hydrogen peroxide and inhibition of ultraviolet light-induced oxidative DNA damage by aqueous extracts from green and black teas.Free Radic. Biol. Med., 26, 1427–1435 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Yang, G. Y., Liao, J., Li, C., Chung, J., Yurkow, E. J., Ho, C. T., and Yang, C. S., Effect of black and green tea polyphenols on c-jun phosphorylation and H2O2 production in transformed and non-transformed human bronchial cell lines: possible mechanisms of cell growth inhibition and apoptosis induction.Carcinogenesis, 21, 2035–2039 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Zacchi, V., Soranzo, C., Cortivo, R., Radice, M., Brun, P., and Abatangelo, G.In vitro engineering of human skin-like tissue.J. Biomed. Mater. Res., 40, 187–194 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Chan Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SY., Kim, DS., Kwon, SB. et al. Protective effects of EGCG on UVB-induced damage in living skin equivalents. Arch Pharm Res 28, 784–790 (2005). https://doi.org/10.1007/BF02977343

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977343

Key words

Navigation