Skip to main content
Log in

Biological upgrading of heavy crude oil

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Heavy crudes (bitumen) are extremely viscous and contain high concentrations of asphaltene, resins, nitrogen and sulfur containing heteroaromatics and several metals, particularly nickel and vanadium. These properties of heavy crude oil present serious operational problems in heavy oil production and downstream processing. There are vast deposits of heavy crude oils in many parts of the world. In fact, these reserves are estimated at more than seven times the known remaining reserves of conventional crude oils. It has been proven that reserves of conventional crude oil are being depleted, thus there is a growing interest in the utilization of these vast resources of unconventional oils to produce refined fuels and petrochemicals by upgrading. Presently, the methods used for reducing viscosity and upgradation is cost intensive, less selective and environmentally reactive. Biological processing of heavy crudes may provide an ecofriendly alternative or complementary process with less severe process conditions and higher selectivity to specific reactions to upgrade heavy crude oil. This review describes the prospects and strengths of biological processes for upgrading of heavy crude oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunt, J. M. (1979)Petroleum Geochemistry and Geology. 2nd ed., W.H. Freeman, San Francisco, USA.

    Google Scholar 

  2. Martinez, A. R. (1984) Report of working group on definitions. pp. 1xvii-1xviii. In: R. F. Meyer, J. C. Wynn, and J. C. Olson (eds.),The Future of Heavy Crude and Tar Sands, Second International Conference, McGraw-Hill, New York, NY, USA.

    Google Scholar 

  3. Petersen, N. F. and P. J. Hickey (1987) California Plio-Miocene oils: Evidence of early generation. pp. 351–359. In: R. F. Meyer (eds.),Exploration for Heavy Crude Oil and Natural Bitumen.Am. Assoc. Petrol. Geol., USA.

    Google Scholar 

  4. Roadifer, R. E. (1987) Size distribution of the worlds largest known oil and tar accumulations. pp. 3–23. In: R. F. Meyer (eds.):Exploration for Heavy Crude Oil and Bitumen.Am. Assoc. Petrol. Geol., USA.

    Google Scholar 

  5. Wu, W. and J. Chen (1999) Characteristics of Chinese heavy crudes.J. Pet. Sci. Eng. 22: 25–30.

    Article  CAS  Google Scholar 

  6. Yaghi, B. M. and A. Al-Bemani (2002) Heavy crude oil viscosity reduction for pipeline transportation.Energy Sources 24: 93–102.

    Article  CAS  Google Scholar 

  7. Leon, V. (2000) Composition and structure of heavy oils.J. CODICID 2: 34–43.

    Google Scholar 

  8. Leon, V. (1998) New vision on heavy crude oil molecular structure.Vision Technologia 5: 131–138 (in Spanish).

    CAS  Google Scholar 

  9. Speight, J. G. (1998)The Chemistry and Technology of Petroleum. pp. 412–467. Marcel Dekker, Inc., New York, NY, USA.

    Google Scholar 

  10. Payzant, J. D., E. M. Lown, and O. P. Strausz (1991) Structural units of Athabasca asphaltene: the aromatics with a linear carbon network.Energy Fuels 5: 445–453.

    Article  CAS  Google Scholar 

  11. Groenzin, H. and O. C. Mullins (2000) Molecular size and structure of asphaltenes from various sources.Energy Fuels 14: 677–684.

    Article  CAS  Google Scholar 

  12. Artok, L., Y. Su, Y. Hirose, M. Hosokawa, S. Murata, and M. Nomura (1999) Structure and reactivity of petroleumderived asphaltene.Energy Fuels 13: 287–296.

    Article  CAS  Google Scholar 

  13. Strausz, O. P., T. W. Mojelsky, E. M. Lown, I. Kowalewski, and F. Behar (1999) Structural features of Boscan and Duri asphaltenes.Energy Fuels 13: 228–247.

    Article  CAS  Google Scholar 

  14. Strausz, O. P., T. W. Mojelsky, and E. M. Lown (1992) The molecular structure of asphaltene: an unfolding story.Fuel 71: 1355–1363.

    Article  CAS  Google Scholar 

  15. Peng, P., A. Morales-Izquierdo, A. Hogg, and O. P. Strausz (1997) Molecular structure of athabasca asphaltene: sulfide, ether, and ester linkages.Energy Fuels 11: 1171–1187.

    Article  CAS  Google Scholar 

  16. Bressler, D. C. and M. R. Gray (2003) Transport and reaction processes in bioremediation of organic contaminants. 1. Review of bacterial degradation and transport.Int. J. Chem. React. Eng. 1: R3.

    Google Scholar 

  17. Gray, M. R. (1994)Upgrading Petroleum Residues and Heavy Oils. Marcel Dekker, Inc., New York, NY, USA.

    Google Scholar 

  18. Pineda-Flores, G., G. Boll-Arguello, C. Lira-Galeana, and A. M. Mesta-Howard (2004) A microbial consortium isolated from a crude oil sample that uses asphaltenes as a carbon and energy source.Biodegradation 15: 145–151.

    Article  CAS  Google Scholar 

  19. Ferrari, M. D., C. Albornoz, and E. Neirotti (1994) Biodegradability in soil of residual hydrocarbons in petroleum tank bottoms.Rev. Argent. Microbiol. 26: 157–170 (in Spanish).

    CAS  Google Scholar 

  20. Pendrys, J. P. (1989) Biodegradation of asphalt cement-20 by aerobic bacteria.Appl. Environ. Microbiol. 55: 1357–1362.

    CAS  Google Scholar 

  21. Rontani, J. F., F. Bosser-Joulak, E. Rambeloarisoa, J. C. Bertrand, and G. R. Faure (1985) Analytical study of asphalt crude oil and asphaltenes biodegradation.Chemosphere 14: 1413–1422.

    Article  CAS  Google Scholar 

  22. Rojas-Avelizapa, N. G., E. Cervantes-Gonzalez, R. Cruz-Camarillo, and L. I. Rojas-Avelizapa (2002) Degradation of aromatic and asphaltenic fractions bySerratia liquefasciens andBacillus sp.Bull. Environ. Contam. Toxicol. 69: 833–842.

    Article  CAS  Google Scholar 

  23. Premuzic, E. T., M. S. Lin, and B. Manowitz (1994) The significance of chemical markers in the bioprocessing of fuels.Fuel Process Technol. 40: 227–239.

    Article  CAS  Google Scholar 

  24. Lin, M. S., E. T. Premuzic, J. H. Yablon, and W. M. Zhou (1996) Biochemical processing of heavy oils and residuum.Appl. Biochem. Biotechnol. 57/58: 659–664.

    Article  CAS  Google Scholar 

  25. Premuzic, E. T. and M. S. Lin (1999) Induced biochemical conversions of heavy crude oils.J. Pet. Sci. Eng. 22: 171–180.

    Article  CAS  Google Scholar 

  26. Premuzic, E. T., M. S. Lin, M. Bohenek, and W. M. Zhou (1999) Bioconversion reactions in asphaltenes and heavy crude oils.Energy Fuels 13: 297–304.

    Article  CAS  Google Scholar 

  27. Premuzic, E. T., M. S. Lin, H. Lian, W. M. Zhou, and J. Yablon (1997) The use of chemical markers in the evaluation of crude bioconversion products, technology, and economic analysis.Fuel Process. Technol. 52: 207–223.

    Article  CAS  Google Scholar 

  28. Premuzic, E. T., M. S. Lin, and L. Racaniello (1993) Chemical markers of induced microbial transformations in crude oils. pp. 37–54. In: E. T. Premuzic and A. Woodhead (eds.).Microbial Enhancement of Oil Recovery: Recent Advances. Elsevier, NY, USA.

    Chapter  Google Scholar 

  29. Premuzic, E. T. (1994) Biochemically enhanced oil recovery and oil treatment.US patent 5,297,025.

  30. Premuzic, E. T. and M. S. Lin (1996) Process for producing modified organisms for oil treatment at high temperatures, pressure and salinity.US Patent 5,492,828.

  31. Premuzic, E. T. and M. S. Lin (1999) Biochemical upgrading of oils.US Patent 5,858,766.

  32. Kanaly, A. R. and S. Harayama (2000) Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria.J. Bacteriol. 182: 2059–2067.

    Article  CAS  Google Scholar 

  33. Van Hamme, J. D., P. M. Fedorak, J. M. Foght, M. R. Gray, and H. D. Dettman (2004) Use of a novel fluorinated organosulfur compound to isolate bacteria capable of carbon-sulfur bond cleavage.Appl Environ. Microbiol. 70: 1487–1493.

    Article  CAS  Google Scholar 

  34. Fedorak, P. M., K. M. Semple, R. Vazquez-Duhalt, and D. W. S. Westlake (1993) Chloroperoxidase-mediated modifications of petroporphyrins and asphaltenes.Enzyme Microb. Technol. 15: 429–437.

    Article  CAS  Google Scholar 

  35. Mogollon, L., R. Rodriguez, W. Larrota, C. Ortiz, and R. Torres (1998) Biocatalytic removal of nickel and vanadium from petroporphyrins and asphaltenes.Appl. Biochem. Biotechnol. 70–72: 765–767.

    Article  Google Scholar 

  36. Tinoco, R. and R. Vazquez-Duhalt (1998) Chemical modification of cytochromec improves their properties in oxidation of polycyclic aromatic hydrocarbons.Enzyme Microb. Technol. 22: 8–12.

    Article  CAS  Google Scholar 

  37. Vazquez-Duhalt, R., D. W. S. Westlake, and P. M. Fedorak (1993) Cytochrome c as biocatalyst for the oxidation of thiophenes and organosulfides.Enzyme Microb. Technol. 15: 494–499.

    Article  CAS  Google Scholar 

  38. Garcia-Arellano, H., E. Buenrostro-Gonzalez, and R. Vazquez-Duhalt (2004) Biocatalytic transformation of petroporphyrins by chemical modified cytochromec.Biotechnol. Bioeng. 85: 790–798.

    Article  CAS  Google Scholar 

  39. Garcia-Arellano, H., B. Valderrama, G. Saab-Rincon, and R. Vazquez-Duhalt (2002) High temperature biocatalysis by chemically modified cytochrome c.Bioconjug. Chem. 13: 1336–1344.

    Article  CAS  Google Scholar 

  40. Wernerus, H. and S. Stahl (2004) Biotechnological applications for surface-engineered bacteria.Biotechnol. Appl. Biochem. 40: 209–228.

    Article  CAS  Google Scholar 

  41. Van Hamme, J. D., A. Singh, and O. P. Ward (2003) Recent advances in petroleum microbiology.Microbiol. Mol. Biol. Rev. 67: 503–549.

    Article  CAS  Google Scholar 

  42. Gray, K. A., G. T. Mrachko, and C. H. Squires (2003) Biodesulfurization of fossil fuels.Curr. Opin. Microbiol. 6: 229–235.

    Article  CAS  Google Scholar 

  43. Monticello, D. J. (2000) Biodesulfurization and the upgrading of petroleum distillates.Curr. Opin. Biotechnol. 11: 540–546.

    Article  CAS  Google Scholar 

  44. Konishi, J., Y. Ishii, K. Okumura, and M. Suzuki (2000) High temperature desulfurization by microorganisms.US Patent 6,130,081.

  45. Baldi, F., M. Pepi, and F. Fava (2003) Growth ofRhodosporidium toruloides strain DBVPG 6662 on dibenzothiophene crystals and orimulsion.Appl. Environ. Microbiol. 69: 4689–4696.

    Article  CAS  Google Scholar 

  46. Bhadra, A., J. M. Scharer, and M. Moo-Young (1987) Microbial desulphurization of heavy oils and bitumen.Biotechnol. Adv. 5: 1–27.

    Article  CAS  Google Scholar 

  47. Borgne, S. L. and R. Quintero (2003) Biotechnological processes for refining of petroleum.Fuel Process. Technol. 81: 155–169.

    Article  CAS  Google Scholar 

  48. Benedik, M. J., P. R. Gibbs, R. R. Riddle, and R. C. Wilson (1998) Microbial denitrogenation of fossiluels.Trends Biotechnol. 16: 390–395.

    Article  CAS  Google Scholar 

  49. Riddle, R. R., P. R. Gibbs, R. C. Wilson, and M. J. Benedik (2003) Recombinant carbazole-degrading strains for enhanced petroleum processing.J. Ind. Microbiol. Biotechnol. 30: 6–12.

    CAS  Google Scholar 

  50. Kilbane, J. J., A. Daram, J. Abbasian, and K. J. Kayser (2002) Isolation and characterization ofSphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum.Biochem. Biophys. Res. Commun. 297: 242–248.

    Article  CAS  Google Scholar 

  51. Bressler, D. C., L. A. Kirkpatrick, J. M. Foght, P. M. Fedorak, and M. R. Gray (2003) Denitrogenation of carbazole by combined biological and catalytic treatment. American Chemical Society, Petroleum Chemistry Division Preprints 48: 44–46.

    CAS  Google Scholar 

  52. Bressler, D. C., P. M. Fedorak, and M. A. Pickard (2000) Oxidation of carbazole, p-ethylcarbazole, fluorene and dibenzothiophene by the laccase ofCoriolopsis gallica.Biotechnol. Lett. 22: 1119–1125.

    Article  CAS  Google Scholar 

  53. Xu, G. W., K. W. Mitchell, and D. J. Monticello (1998) Fuel product produced by demetalizing a fossil fuel with an enzyme.US Patent 5,624,844.

  54. Vazquez-Duhalt, R., E. Torres, B. Valderrama, and S. Le Borgne (2002) Will biochemical catalysis impact the petroleum refining industry?Energy Fuel 16: 1239–1250.

    Article  CAS  Google Scholar 

  55. Kirkwood, K. M., S. Ebert, D. Kharbanda, J. M. Foght, P. M. Fedorak, and M. R. Gray (2003) Bioprocessing for heavy crude oil viscosity reduction.Proceedings of the American Chemical Society. March 23–27. New Orleans, LA, USA.

  56. Wu, Q., M. R. Gray, M. A. Pickard, P. M. Fedorak, and J. M. Foght (2003) Biocatalytic ring opening of dibenzothiophene and phenanthrene as model substrates dissolved in crude oil.Proceedings of the American Chemical Society. March 23–27, New Orleans, LA, USA.

  57. Coyle, C. L., M. Siskin, D. T. Ferrughelli, M. S. P. Logan, and G. Zylstra (2000) Biological activation of aromatics for chemical processing and/or upgrading of aromatic compounds. petroleum coal, resid, bitumen and other petrochemical streamsUS Patent 6,136,946.

  58. Leon, V., S. Fuenmayor, A. DeSisto, A. Marcano, S. Munoz, and A. Rivas (2003) Isolation of bacteria strains capacities in craking and desulfurization of heavy crude oil.Proceeding of 2nd ICPB The Development and Prospective of Biotechnology Applied to the Oil Industry. November 5–7. Mexico City, Mexico.

  59. Fedorak, P. M., K. M. Semple, R. Vazquez-Duhalt, and D. W. S. Westlake (1993) Chloroperoxidasemediated modifications of petroporphyrins and asphaltenes.Enzyme Microb. Technol. 15: 429–437.

    Article  CAS  Google Scholar 

  60. Vorbeck, C., H. Lenke, P. Fischer, and H. J. Knacknuss (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by aMycobacterium strain.J. Bacteriol. 176: 932–934.

    CAS  Google Scholar 

  61. Esteve-Núñez, A., A. Caballero, and J. L. Ramos (2001) Biological degradation of 2,4,6-trinitrotoluene.Microbiol. Mol. Biol. Rev. 65: 335–352.

    Article  Google Scholar 

  62. Zhang, X., E. R. Sullivan, and L. Y. Young (2000) Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium.Biodegradation 11: 117–124.

    Article  CAS  Google Scholar 

  63. Rieger, P.-G., V. Sinnwell, A. Preuss, W. Francke, and H.-J. Knackmuss (1999) Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation byRhodococcus erythropolis.J. Bacteriol. 181: 1189–1995.

    CAS  Google Scholar 

  64. Premuzic, E. T., M. S. Lin, M. Bohenek, and W. M. Zhou (1999) Bioconversion reactions in asphaltenes and heavy crude oils.Energy Fuels 13: 297–304.

    Article  CAS  Google Scholar 

  65. Heiss, G., K. W. Hofmann, N. Trachtmann, D. M. Walters, P. Rouvière, and H.-J. Knackmuss (2002) npd gene functions ofRhodococcus erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation.Microbiology 148: 799–806.

    CAS  Google Scholar 

  66. Miller, R. M. and R. Bartha (1989) Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes.Appl. Environ. Microbiol. 55: 269–274.

    CAS  Google Scholar 

  67. Kropp, K. G., I. A. Davidova, and J. M. Suflita (2000) Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture.Appl. Environ. Microbiol. 66: 5393–5398.

    Article  CAS  Google Scholar 

  68. Spormann, A. M. and F. Widdel (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria.Biodegradation 11: 85–105.

    Article  CAS  Google Scholar 

  69. Widdel, F. and R. Rabus (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons.Curr. Opin. Biotechnol. 12: 259–276.

    Article  CAS  Google Scholar 

  70. Hamer, G. and N. Al-Awadhi (2000) Biotechnological applications in the oil industry.Acta Biotechnol. 20: 335–350.

    Article  CAS  Google Scholar 

  71. Lazar, I., A. Voicu, C. Nicolescu, D. Mucenica, S. Dobrota, I. G. Petrisor, M. Stefanescu, and L. Sandulescu (1999) The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition.J. Pet. Sci. Eng. 22: 161–169.

    Article  CAS  Google Scholar 

  72. Rocha, C. A., D. Gonzalez, M. L. Iturralde, U. L. Lacoa, and F. A. Morales (2000) Production of oily emulsions mediated by a microbial tenso-active agent.US Patent 6,060,287.

  73. Iqbal, S., Z. M. Khalid, and K. A. Malik (1995) Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray-induced mutant ofPseudomonas aeruginosa.Lett. Appl. Microbiol. 21: 176–179.

    Article  CAS  Google Scholar 

  74. Venkateswaran, K., T. Hoaki, M. Kato, and T. Maruyama (1995) Microbial degradation of resins fractionated from Arabian light crude oil.Can. J. Microbiol. 41: 418–424.

    Article  CAS  Google Scholar 

  75. Barathi, S. and N. Vasudevan (2001) Utilization of petroleum hydrocarbons byPseudomonas fluorescens isolated from a petroleum-contaminated soil.Environ. Int. 26: 413–416.

    Article  CAS  Google Scholar 

  76. Abalos, A., M. Vinas, J. Sabate, M. A. Manresa, and A. M. Solanas (2004) Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced byPseudomonas aeruginosa AT10.Biodegradation 15: 249–260.

    Article  CAS  Google Scholar 

  77. Cairns, W. L., D. G. Cooper, J. E. Zajic, J. M. Wood, and N. Kosaric (1982) Characterization ofNocardia amarea as a potent biological coalescing agent of water-oil emulsions.Appl. Environ. Microbiol. 43: 362–366.

    Google Scholar 

  78. Das, M. (2001) Characterization of de-emulsification capabilities of aMicrococcus species.Bioresour. Technol. 79: 15–22.

    Article  CAS  Google Scholar 

  79. Nadarajah, N., A. Singh, and O. P. Ward (2002) Deemulsification of petroleum oil emulsion by a mixed bacterial culture.Process Biochem. 37: 1133–1141.

    Article  Google Scholar 

  80. Park, S. H., J.-H. Lee, S.-H. Ko, D.-S. Lee, and H. K. Lee (2000) Demulsification of oil-in-water emulsions by aerial spores of aStreptomyces sp.Biotechnol. Lett. 22: 1389–1395.

    Article  CAS  Google Scholar 

  81. Herman, D. C., P. M. Fedorak, M. D. MacKinnon, and J. W. Costerton (1994) Biodegradation of naphthenic acids by microbial populations indigenous to oil sands tailings.Can. J. Microbiol. 40: 467–477.

    Article  CAS  Google Scholar 

  82. Cooper, D. G. (1982)Biosurfactants and Enhanced Oil Recovery. pp. 112–114. Proceedings of Int. Conf. Microbial Enhanced Oil Recovery, May 16–21, Afton, UK.

  83. Bryant, R. S. and J. Douglas (1987) Evaluation of microbial systems in porous media for enhanced oil recovery, paper SPE 16284, SPE Int. Symp. on Oilfied Chemistry, Feb. 4–6, San Antonio.

  84. Hayes, M. E., K. R. Hrebenar, P. L. Murphy, L. E. Futch, jr., J. F. Deal III, and P. L. Bolden, Jr. (1990) Bioemulsifier-stabilized hydrocarbosols.US Patent 4,943,390.

  85. Ayala, M., R. Tinoco, V. Hernández, P. Bremuntz, and R. Vazquez-Duhalt (1998) Biocatalyticoxidation of fuel as an alternative to biodesulfurization.Fuel Process Technol. 57: 101–111.

    Article  CAS  Google Scholar 

  86. Ayala, M., N. R. Robledo, A. Lopez-Munguia, and R. Vazquez-Duhalt (2000) Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel.Environ. Sci. Technol. 34: 2804–2809.

    Article  CAS  Google Scholar 

  87. Huber, H. and K. O. Stetter (1998) Hyperthermophiles and their possible potential in biotechnology.J. Biotechnol. 64: 39–52.

    Article  CAS  Google Scholar 

  88. Ward, O. P. and M. Moo-Young (1988) Thermostable enzymes.Biotechnol. Adv. 6: 39–69.

    Article  CAS  Google Scholar 

  89. Klein, J., D. E. A. Catcheside, R. Fakoussa, L. Gazso, W. Fritsche, M. Hoefer, F. Laborda, I. Margarit, H. J. Rehm, M. Reich-Walber, W. Sand, S. Schacht, H. Schmiers, L., Setti, and A. Teinbuechel (1999) Biological processing of fuels.Appl. Microbiol. Biotechnol. 52: 2–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leon, V., Kumar, M. Biological upgrading of heavy crude oil. Biotechnol. Bioprocess Eng. 10, 471–481 (2005). https://doi.org/10.1007/BF02932281

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932281

Keywords

Navigation