Skip to main content
Log in

Application of specific brain function evaluation by optical topography

  • Short Communication
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Objectives

To use the evaluation of a specific brain function obtained by optical topography. This system uses a non invasive method to measure brain function unlike other major systems.

Methods

Twelve optical fibers were attached to the subject’s head. Hemodynamic changes in the motor cortex were measured during finger tapping before and after alcohol intake for eachALDH2 genotype.

Results

Different hemodynamic changes in the motor cortex were observed among, theALDH2 genotypes.

Conclusions

Optical topography is a useful tool for evaluating specific brain functions. Further research is needed on the relations between various environmental factors and brain functions by optical topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Maki A, Yamashita Y, Ito Y, Watanabe E, Mayanagi Y, Koizumi H. Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Med. Phys. 1995; 22: 1997–2005.

    Article  PubMed  CAS  Google Scholar 

  2. Watanabe E, Yamashita Y, Maki A, Ito Y, Koizumi H. Noninvasive functional mapping with multi-channel near infrared spectroscopic topography in humans. Neurosci. Lett. 1996; 205: 41–44.

    Article  PubMed  CAS  Google Scholar 

  3. Watanabe E, Maki A, Kawaguchi F, Takashiro K, Yamashita Y, Koizumi H, Mayanagi Y. Non-invasive assessment of language dominance with near-infrared spectroscopic mapping. Neurosci. Lett. 1998; 256: 49–52.

    Article  PubMed  CAS  Google Scholar 

  4. Sato H, Takeuchi T, Sakai KL. Temporal cortex activation during speech recognition: an optical topography study. Cognition. 1999; 73: B55-B66.

    Article  PubMed  CAS  Google Scholar 

  5. Koizumi H, Yamashita Y, Maki A, Yamamoto T, Ito Y, Itagak H, Kennan R. Higher-order brain function analysis by transcranial dynamic near-infrared spectroscopy imaging. J. Biomed. Opt. 1999; 4: 403–413.

    Article  Google Scholar 

  6. Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage. 2001; 14: 1186–1192.

    Article  PubMed  CAS  Google Scholar 

  7. Takeshita T, Morimoto K, Mao XQ, Hashimoto T, Furuyama J. Phenotypic differences in low Km aldehyde dehydrogenase in Japanese workers. Lancet. 1993; 341: 837–838.

    Article  PubMed  CAS  Google Scholar 

  8. Harada S, Agarwal DP, Goedde HW. Isozymes of alcohol dehydrogenase and aldehyde dehydrogenase in Japanese and their role in alcohol sensitivity. Adv. Exp. Med. Biol. 1980; 132: 31–39.

    PubMed  CAS  Google Scholar 

  9. Mizoi Y, Tatsuno Y, Adachi J, Kogame M, Fukunaga T, Fujiwara S, Hishida S, Ijiri I. Alcohol sensitivity related to polymorphism of alcohol-metabolizing enzymes in Japanese. Pharmacol. Biochem. Behav. 1983; 18: 127–133.

    Article  PubMed  Google Scholar 

  10. Wall TL, Thomasson HR, Schuckit MA, Ehlers CL. Subjective Feelings of Alcohol Intoxication in Asians with Genetic Variantions of ALDH2 Alleles. Alcohol Clin. Exp. Res. 1992; 16: 991–995.

    Article  PubMed  CAS  Google Scholar 

  11. Wall TL, Gallen CC, Ehlers CL. Effects of Alcohol on the EEG in Asian Men with genetic variations of ALDH2. Biol. Psychiatry. 1993; 34: 91–99.

    Article  PubMed  CAS  Google Scholar 

  12. Wall TL, Ehlers CL. Acute effects of, alcohol on P300 in Asians with different ALDH2 genotypes. Alcohol Clin. Exp. Res. 1995; 19; 617–622.

    Article  PubMed  CAS  Google Scholar 

  13. Nishimura FT, Fukunaga T, Nishijo H, Ono T, Kajiura And H, Yokomukai Y. Electroencephalogram spectral characteristics after alcohol ingestion in Japanese men with aldehyde dehydrogenase-2 genetic variations: comparison with peripheral changes. Alcohol Clin. Exp. Res. 2001; 25: 1030–1036.

    Article  PubMed  CAS  Google Scholar 

  14. Kahkonen S, Kesaniemi M, Nikouline VV, Karhu J, Ollikainen M, Holi M, Ilmoniemi RJ. Ethanol modulates cortical activity: direct evidence with combined TMS and EEG. Neuroimage. 2001; 14: 322–328.

    Article  PubMed  CAS  Google Scholar 

  15. Clarici A, Fabbro F, Bava A. Effects of moderate doses of ethyl alcohol on cerebral lateralization of, language and on hand movements. I: A dual-task paradigm study. Boll. Soc. Ital. Biol. Sper. 1995; 7–8: 213–220.

    Google Scholar 

  16. Valeriote C, Tong JE, Durding B. Ethanol, tabacco and laterality effects on simple and complex motor performance. J. stud. Alcohol. 1979; 40: 823–830.

    PubMed  CAS  Google Scholar 

  17. Lindenschmidt R, Brown D, Cerimele B, Walle T, Forney RB. Combined effects of propranolol and ethanol on human psychomotor performance. Toxicol. Appl. Pharmacol. 1983; 67: 117–121.

    Article  PubMed  CAS  Google Scholar 

  18. Judd LL, Hubbard RB, Huey LY, Attewell PA, Janowsky DS, Takahashi KI. Lithium carbonate and ethanol induced “highs” in normal subjects. Arch. Gen. Psychiatry. 1977; 34: 463–467.

    PubMed  CAS  Google Scholar 

  19. Schuckit MA. Subjective responses to alcohol in sons of aocoholics and control subjects. Arch. Gen. Psychiatry. 1984; 41: 879–884.

    PubMed  CAS  Google Scholar 

  20. Hirth C, Obrig H, Villringer K, Thiel A, Bernarding J, Muhlnickel W, Flor H, Dirnagl U, Villringer A. Non-invasive functional mapping of the human motor cortex using nearinfrared spectroscopy. Neuroreport. 1996; 7: 1977–1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanehisa Morimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obata, A., Morimoto, K., Takeshita, T. et al. Application of specific brain function evaluation by optical topography. Environ Health Prev Med 8, 29–32 (2003). https://doi.org/10.1007/BF02897941

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897941

Key words

Navigation