Skip to main content
Log in

Homeotic Sexual Translocations and the Origin of Maize (Zea Mays, Poaceae): A New look at an old problem

En la controversia sobre el origen del maíz, la Hipótesis Ortodoxa del Teosinte (OTH; Beadle 1939, 1972; Iltis 1971) propuso que fueron cuatro o cinco las mutaciones cloves que cambiaron las mazorcas del teosinte (el Zea silvestre) de doble fila (dísticas) con una sola hilera de granos por fila a una mazorca de cuatro a muchas filas (polística) con dos hileras de granos por fila.

  • Published:
Economic Botany Aims and scope Submit manuscript

Abstract

In the Origin of Maize Controversy, the Orthodox Teosinte Hypothesis (OTH; Beadle 1939, 1972; Iltis 1971), five key mutations change 2-ranked (distichous) ears of teosinte (wild Zea) with a single row of grains per rank to 4- to many-ranked (polystichous) maize ears with a double row of grains per rank. BUT teosinte ears are lateral to the 1° branch axes, maize ears, like their male homologues, the teosinte I° branch tassel spikes, terminal, an enigma long unrecognized, hence ignored. In the Catastrophic Sexual Transmutation Theory (CSTT; Iltis 1983b, 1987), now abandoned, the I° branch tassel (male) of teosinte (spikelets soft-glumed, paired, i.e., double-rowed per rank, as in maize ears), when brought under female hormonal control by branch condensation, becomes feminized into a maize proto-ear. BUT lateral ears should then have remained teosintoid (2-ranked, each rank with a single row of grains), yet are in fact double-rowed.

Combining OTH and CSTT, the new Sexual Translocation Theory (STLT) is based on: first, the branching pattern of teosinte ear clusters (Cámara-H. & Gambino 1990), sequentially maturing, sympodially branching, typically Andropogonoid systems, called rhipidia (sing, rhipidium), where each higher order (younger) ear originates as a lateral branch of its lower order, earlier maturing predecessor; and second, on 3 or 4 key mutations [cupule reduction, softening of glumes, doubling of female spikelets], which, by projecting outward the grains, invited human domestication by making them accessible. Within each ear cluster, the earliest maturing, hence nutrient-monopolizing and largest ear would be selected, all younger ears, already nutrientinhibited, suppressed. As fewer, larger ears evolved, and branch internode condensation moved male tassels into female hormonal zones, homeotic conversions translocated female morphology to terminal male positions: first replacing each of the II° branch tassels, and ultimately the 1° branch tassel (male), with an ear (female). With this, now female structure in the apically dominant, hence most nutrient-demanding terminal position gradually suppressing all subsidiary ears on the 1° branch beneath it, mutations for polystichy (contingent on nutrient overload) were finally allowed to become expressed, and the multi-rowed maize ear (at first with an atavistic male tail) evolved. Favored by human selection, these increases in apical dominance by stepwise homeotic sexual conversions explain both archeological and morphological realities, but need to be harmonized with recent results of developmental genetics.

Current evidence suggests that teosinte was first tended for its green ears and sugary pith by hunter-gatherers as an occasional rainy-season food in small “garden” populations away from its homeland, and not for its abundant grain-containing, hard fruitcases, which easily mass-collected but useless as food, are as yet unknown from the archeological record. A rare grain-liberating teosinte mutation (probably expressed in only one “founder” plant, a mazoid “Eve”), which exposed the encased grain for easy harvest, was soon recognized as useful, collected and planted (or self-planted). Thus maize was started on its way to a unique horticultural domestication that is not comparable to that of the temperate Old World mass-selected agricultural grains.

Résumé

Pero las mazorcas del teosinte están en una posición lateral orientadas a la rama principal, en forma similar a las estructuras homólogas masculinas, la espiga terminal, un enigma que no se había reconocido y por lo tanto ignorado. En la Teoría Catastrófica de la Transmutación Sexual (CSTT, Iltis 1983b, 1987), actualmente abandonada, se propuso que la espiga masculina de la rama principal del teosinte (con las glumas suaves, en pares, o sea con dos hileras por fila, como la mazorca del maíz) cuando sucede el cambio a un control hormonal femenino, por condensatión de la rama, se convierte en un órgano femenino, como un “prototipo” de mazorca de maíz. Sin embargo, las mazorcas laterales debieron haberse que dado como las del teosinte, es decir, en doblefila y coda fila con una hilera sencilla de granos, aunque en realidad denen dos hueras. La nueva Teoría de la Translocatión Sexual (STLT) combina el OTH y CSTT en base a ciertas características como son: primero el patrón de ramificación de los racimos de las mazorcas del teosinte (Cdmara-H. & Gambino 1990) y el tiempo de maduración, en una secuencia simpodial, como es típico de un Sistema Andropogonoide (ripidio), donde la mazorca de un nivel superior (más jóven) se origina como la de una rama lateral de un nivel inferior y así su predecesor madura más tempranamente. Segundo, como resultado de las tres o cuatro mutaciones cloves (reductión de la cúpula, ablandamiento de las glumas y duplicatión de las espiguillas femeninas), los granos quedaron expuestos, invitando asi a su domesticatión por el ser humano por facilitarse los granos a ser cosechados. Dentro de coda racimo, la mazorca que maduraba más tempranamente, por consiguiente la que acaparaba los nutrientes y por consecuencia la de mayor tamaño síria seleccionada, mientras que, las otras no bien desarrolladas, por falta de nutrientes se verían suprimidas. En el transcurso de la evolutión de las mazorcas más grandes, los internudos se vieron disminuidos en tamaño y con ésta reductión, las espigas masculinas se trasladaron hacia las zonas de hormonas femeninas. Mediante éstas conversiones homeóticas, se cambió la morfologia femenina hacia los sitios masculinos terminales: primero, reemplazando cada uno de los racimos masculinos y posteriormente, el racimo masculino de la rama primaria. Ahora con la estructura femenina en una posición terminal o con dominancia apical y siendo la que necesitaba una mayor concentración de nutrientes, gradualmente inhibió el crecimiento de todas las mazorcas auxiliares inferiores. Las mutaciones poísticas (eventual sobrecargo de nutrientes) finalmente pudieron ser evidentes, evolucionando así en una mazorca con muchas hileras, aunque a menudo, con una espiga atávica. Con el tiempo, las mazorcas fueron mejoradas y seleccionadas por el hombre aumentando así la dominancia apical, originalmente promovida por las conversiones sexuales homeóticas, lo que explican la mayoria de las evidencias arqueológicas y morfológicas. Es necesario comparar tales evidencias con los resultados derivados de la genética de la ontogenia. Ahora se crée que los cazadores y recolectores en la temporada de lluvias, inicialmente utilizaban las mazorcas verdes y tiernas del teosinte, traídas de poblaciones o pequeños “jardines” de áreas alejadas a sus hogares. En realidad, ellos consumían sólo la médula dulce de la mazora y no los granos duros encapsulados, difíciles de comer y aunque éstos eran fáciles de cosechar, el registro aqueológico no demuestra que fueron utilizados. Es probable que haya ocurrido una mutatión en el teosinte en la que se liberó el grano de la cápsula, hecho ocurrido en una sola planta “fundadora” (la “Eva” del maíz), la cual expuso el grano encapsulado haciéndolo fácil de cosechar, al que muy pronto se le reconoció como útil, se colectó y sembró (o sembró por si mismo). Es así como el maíz tuvo una domestication unica en la horticultura, la cual no se compara con la de los cereales seleccionados de cosechas masivas en el Viejo Mundo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alava, R. O. 1952. Spikelet variation inZea mays L. Annals of the Missouri Botanical Garden 39:65–66.

    Article  Google Scholar 

  • Anderson, E. 1945. Maize in the New World. Pages 27–42in C. M. Wilson, ed., New Crops for the New World. MaCmillan, New York.

    Google Scholar 

  • —. 1969. What I found out about the corn plant. Missouri Botanical Garden Bulletin 57:7.

    Google Scholar 

  • Ascherson, P. 1875. UeberEuchlaena mexicana Schrad. Sitzungsberichte des Botanischen Vereins Provinz Brandenburg 17:76–80.

    Google Scholar 

  • Balick, M. J. and P. A. Cox. 1997. Plants, people, and culture: the science of ethnobotany. Scientific American Library, W H. Freeman, New York.

    Google Scholar 

  • Beadle, G. W. 1939. Teosinte and the origin of maize. Journal of Heredity 30:245–247.

    Google Scholar 

  • —. 1972. The mystery of maize. Field Museum of Natural History Bulletin 43(10):2–11.

    Google Scholar 

  • —. 1977. The originof Zea mays. Pages 615–635in C. A. Reed, ed., The origins of agriculture. Moulton, The Hague.

    Google Scholar 

  • —. 1978. Teosinte and the origin of maize. Pages 113–128in D. B. Waiden, ed., Maize breeding and Genetics. John Wiley and Sons, New York.

    Google Scholar 

  • —. 1980. The ancestry of corn. Scientific American 242(1): 112–119, 162.

    Google Scholar 

  • Benz, B. F. 1990. ed. The Professor Hugh H. Iltis Commemorative Issue: an avid investigator and searcher for the origin of corn. Maydica 35(2): 78–186.

  • — 1993. éd. Biología, Ecología y Conservacíon del GéneroZea. Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.

    Google Scholar 

  • — 1995. El maíz silvestre de Tehuacán revisitado. Pages 45–54in Aurora Montúfar López, ed. Investigaciones Recientes en Paleobotánica y Palinologia. Coleccion Cientifica No. 294, Instituto Nacional de Antropologia e Historia, Series Arqueologia (Mexico).

    Google Scholar 

  • —. 1999. On the origin, evolution, and dispersal of maize. Pages 25–38in M. Blake, ed., Pacific Latin America in Prehistory, the Evolution of Archaic and Formative Cultures. Washington State University Press, Pullman, Washington.

    Google Scholar 

  • —,and H. H. Iltis. 1990. Studies in archeological maize I: the “wild” maize from San Marcos cave reexamined. American Antiquity 55(3):500–511.

    Article  Google Scholar 

  • —,and H. H. Iltis. 1992. Evolution of female sexuality in the maize ear (Zea mays L. ssp. mays— Gramineae). Economic Botany 46:212–222.

    Google Scholar 

  • Benz, B. F., and A. Long. 2000. Early evolution of maize in the Tehuacán valley, Mexico. Current Anthropology 41(3): in press.

  • —,L. R. Sanchez-Velásquez, and F. J. Santana Michel. 1990. Ecology and ethnobotany ofZea diploperennis: preliminary investigations. Maydica 35:85–98.

    Google Scholar 

  • Bird, R. McK. 1978. A name change for Central American teosinte. Taxon 27:361–363.

    Article  Google Scholar 

  • Bonnett, O. T. 1954. The inflorescence of maize. Science 120:77–87.

    Article  PubMed  CAS  Google Scholar 

  • Buckler, E. S. IV, D. M. Pearsall, and T. P. Holtsford. 1998. Climate, plant ecology and Central Mexican archaic subsistence. Current Anthropology 39(1):151–164.

    Article  Google Scholar 

  • Cámara-Hernández, J. and S. Gambino. 1990. Ontogeny and morphology ofZea diploperennis inflorescences and the origin of maize (Zea mays ssp.mays). Maydica 35:113–124.

    Google Scholar 

  • —,and P. C. Mangelsdorf. 1981. Perennial corn and annual teosinte phenotypes in crosses ofZea diploperennis and maize. Bussey Institution of Harvard University Publication 10:1–37.

    Google Scholar 

  • Cohen, M. N. 1977. The Food Crisis in Prehistory: Overpopulation and the Origins of Agriculture. Yale University Press, New Haven, New Jersey.

    Google Scholar 

  • Collins, G. N. 1912. The origin of maize. Journal of the Washington Academy of Science 2:520–530.

    Google Scholar 

  • —. 1919. Structure of the maize ear as indicated inZea-Euchlaena hybrids. Journal of Agricultural Research 17:127–135.

    Google Scholar 

  • —. 1925. The “metamorphosis” ofEuchlaena into maize. Journal of Heredity 16:378–380.

    Google Scholar 

  • Cowan, C. W., and P. J. Watson, eds. 1992. The Origins of Agriculture, an International Perspective. Smithsonian Press, Washington.

    Google Scholar 

  • Crosswhite, F. S. 1982a. [as unsigned Editorial Summary] Corn (Zea mays) in relation to its wild relatives. Desert Plants 3(4):193–201.

    Google Scholar 

  • Crosswhite, F. S.. 1982b. [as unsigned picture caption] Preservation of genetic diversity. Desert Plants 3(4):back cover.

  • Cutler, H. C., and M. C. Cutler. 1948. Studies in the structure of the maize plant. Annals of the Missouri Botanical Garden 35:301–316.

    Article  Google Scholar 

  • —,and E. Anderson. 1941. A preliminary survey of the genusTripsacum. Annals of the Missouri Botanical Garden 28:249–269.

    Article  Google Scholar 

  • Darlington, C. D. 1956. Chromosome Botany. Allen and Unwin. London.

    Google Scholar 

  • Davis, W. 1994. Towards a new synthesis in ethnobotany. Pages 339–357in M. Rios & H. Borgtoft Pedersen, eds., Las Plantas y El Hombre. ABYAYALA. Quito, Ecuador.

    Google Scholar 

  • Doebley, J. F. 1983. The maize and teosinte male inflorescence: a numerical taxonomic study. Annals of the Missouri Botanical Garden 70:32–70.

    Article  Google Scholar 

  • — 1990a. Molecular systematics ofZea (Gramineae). Maydica 35:143–150.

    Google Scholar 

  • — 1990b. Molecular evidence and the evolution of maize. Economic Botany 44(3 Suppl.):6–28.

    CAS  Google Scholar 

  • — 1990c. Molecular evidence for gene flow amongZea species. BioScience 40:443–448.

    Article  Google Scholar 

  • —,M. M. Goodman, and C. W. Stuber. 1984. Isoenzymatic variation inZea (Gramineae). Systematic Botany 9:203–218.

    Article  Google Scholar 

  • —,and M. M. Goodman. 1987. Patterns of isozyme variation between maize and Mexican annual teosinte. Economic Botany 41:234–246.

    Google Scholar 

  • —,and M. M. Goodman, H. H. Iltis. 1980. Taxonomy ofZea (Gramineae) I. Subgeneric classification with key to taxa. American Journal of Botany 7:982–993.

    Article  Google Scholar 

  • —,and A. Stec. 1991. Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295.

    PubMed  CAS  Google Scholar 

  • —,A. Stec, and L. Hubbard. 1997. The evolution of apical dominance. Nature 386:485–488.

    Article  PubMed  CAS  Google Scholar 

  • —,and R. L. Wang. 1997. Genetics and the evolution of plant form: an example from maize. Cold Spring Harbor Symposium in Quantitative Biology 62:361–367.

    CAS  Google Scholar 

  • Dorweiler, J., A. Stec, J. Kermicle, and J. Doebley. 1993. Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution. Science 262:23–235.

    Article  Google Scholar 

  • —,and J. Doebley. 1997. Developmental analysis ofTeosinte Glume Architecture 1: A key locus in the evolution of maize (Poaceae). American Journal of Botany 84(10):1313–1322.

    Article  Google Scholar 

  • Finan, J. J. 1938. Maize in the great herbals. Annals of the Missouri Botanical Garden 35:149–191.

    Article  Google Scholar 

  • Flannery, K. V. 1973. The origins of agriculture. Annual Review of Anthropology 2:271–310.

    Article  Google Scholar 

  • Flannery, K. V, ed. 1986. Guilá Naquitz. Archaic Foraging and Early Agriculture in Oaxaca, Mexico. Academic Press. Orlando, Florida.

    Google Scholar 

  • Fuchs, L. 1542. De Historia Stirpium Commentarii Insignes … Isingrin, Basel [Switzerland] (See Meyer, F. G. et al. 1999 Vol. II).

  • -. 1543. New Kreüterbuch. Isingrin, Basel [Switzerland].

  • Galinat, W. C. 1956. Evolution leading to the formation of the cupulate fruitcase in the AmericanMaydeae. Botanical Museum Leaflets Harvard University 17:217–239.

    Google Scholar 

  • —. 1959. The phytomer in relation to floral ho mologies in the AmericanMaydeae. Botanical Museum Leaflets Harvard University 19:1–32.

    Google Scholar 

  • -. 1974. Corn … a study of ancient gene pools. FINDINGS, a progress report, Massachusetts Agricultural Experiment Station, College of Food and Natural Resources, Univerity of Massachusetts at Amherst [Mass.] Sept.–Oct. 1974:1–4.

  • —. 1975. The evolutionary emergence of maize. Bulletin of the Torrey Botanical Club. 102:313–324.

    Article  Google Scholar 

  • —. 1985a. Domestication and diffusion of maize. Pages 245–282in R. I. Ford, ed., Prehistoric Food Production in North America. Anthropology Papers No. 75. Ann Arbor: Museum of Anthropology, University of Michigan.

    Google Scholar 

  • —. 1985b. The missing links between teosinte and maize: a review. Maydica 30:137–160.

    Google Scholar 

  • —. 1988. The origin of corn. Agronomy 18:1–31.

    Google Scholar 

  • —. 1992. Evolution of corn. Advances in Agronomy 47:203–231.

    Article  Google Scholar 

  • —. 1995. El origen del maize: El grano de la humanidad/The origin of maize: grain of humanity. Economic Botany 49:3–12.

    Google Scholar 

  • Gay, J. P. 1994. Fabuleux Mais: Histoire et Avenir d’une Plante. Association General des Producteurs de Maïs. Pau, France.

    Google Scholar 

  • Gentry, H. S. 1968. Origin of the common bean,Phaseolus vulgaris. Economic Botany 23:55–69.

    Google Scholar 

  • Goodman, M. M. 1988. The history and evolution of maize. CRC Critical Reviews in Plant Sciences 7(3): 197–220 (excellent bibliography!).

    Google Scholar 

  • Gould, S. J. 1984. A short way to corn. Natural History 93:12–20.

    Google Scholar 

  • —. 1985. The Flamingo’s Smile. Norton, New York.

    Google Scholar 

  • Guzmán-M, R., and H. H. Iltis. 1991. Biosphere reserve established in Mexico to protect rare maize relative. Diverstiy 7:82–84.

    Google Scholar 

  • Hanson, M. A., B. S. Gaut, A. D. Stec, S. L. Fuerstenberg, M. M. Goodman, E. H. Coe, and J. F. Doebley. 1996. Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzyme loci. Genetics 143:1395–1407.

    PubMed  CAS  Google Scholar 

  • Harshberger, J. W. 1893. Maize, a botanical and economic study. Contributions of the Botanical Laboratory, University of Pennsylvania 1:75–202. Philadelphia.

    Google Scholar 

  • —. 1896. Fertile crosses of teosinte and maize. Garden and Forest 9:522–523.

    Google Scholar 

  • -. 1907. Maize or Indian corn. Pages 398-402in Encyclopedia of American Agricultural Education, ed. 4. vol 2.

  • Hitchcock, A. S. 1950. Manual of the Grasses of the United States. U.S. Department of Agriculture Miscellaneous Publications, No. 200. 2nd ed. Revised by A. Chase. Washington, D.C.

  • Hooker, J. D. 1879.Euchlaena [luxurians]. No. 6414, Curtis Botanical Magazine. XXXV.

  • Iltis, H. 1911. Über einige beiZea mays L. beobachtete Atavismen, ihre Verursachung durch den MaisbrandUstilago maydis D.C. (Corda), und über die Stellung der GattungZea im System. Zeitschrift für Induktive Abstammungs- und Vererbungslehre 5(l):38–57.

    Article  Google Scholar 

  • Iltis, H. H. 1971. The Maize Mystique—A Reappraisal of the Origin of Corn, (photo-offset). Botany Dept. Univ. of Wisconsin, Madison [Contributions of the University of Wisconsin Herbarium 5:1-4. 1985].

    Google Scholar 

  • —. 1972. The taxonomy ofZea mays (Gramineae). Phytologia 23:248–249.

    Google Scholar 

  • —. 1974. Freezing the genetic landscape: the preservation of diversity in cultivated plants as an urgent social responsibility of plant geneticist and plant taxonomist. Maize Genetics Cooperation Newsletter 48:199–200.

    Google Scholar 

  • —. 1983a. The catastrophic sexual transmutation theory (CSTT): from the teosinte tassel to the ear of corn. Maize Genetics Cooperation Newsletter 57:81–92.

    Google Scholar 

  • —. 1983b. From teosinte to maize: the catastrophic sexual transmutation. Science 222:886–894.

    Article  PubMed  CAS  Google Scholar 

  • —. 1987. Maize evolution and agricultural origins. Pages 195–213in T. R. Soderstrom, K. W. Hilu, C. S. Campbell, and M. E. Barkworth, eds., Grass Systematics and Evolutin. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • — 1989. Dogs, rodents, and agriculture, (letter) Natural History 98(2):4.

    Google Scholar 

  • — 1993. La taxonomia delZea desde una perspectiva historica. Pages 17–39in B. Benz, ed., Biología, Ecología y Conservación del GéneroZea. Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.

    Google Scholar 

  • — 1998.Cleome chapalaensis, n.sp., a South American element on the Mexican Plateau. Boletín, Institute Botanica de Universidad de Guadalajara 5:413–443.

    Google Scholar 

  • —,and J. F. Doebley. 1980. Taxonomy ofZea (Gramineae). II. Sub-specific categories in theZea mays complex and a generic synopsis. American Journal of Botany 67:994–1004.

    Article  Google Scholar 

  • —,and J. F. Doebley. 1984. Zea—A biosystematical Odyssey. Pages 587–616in W. F. Grant, ed., Plant Biosystematics. Academic Press, Montreal, Canada.

    Google Scholar 

  • —,J. F. Doebley, R. Guzman, and B. Pazy 1979.Zea diploperennis (Gramineae): a new teosinte from Mexico. Science 203:186–188.

    Article  PubMed  CAS  Google Scholar 

  • —,D. Kolterman, and B. F. Benz. 1986. Accurate documentation of germplasm: the case of the lost Guatemalan teosintes (Zea, Gramineae). Economic Botany 40:69–77.

    Google Scholar 

  • Kaplan, L., and T. Lynch. 1999.Phaseolus (Fabaceae) in Archeology: AMS radiocarbon dates and their significance for pre-Columbian agriculture. Economic Botany 53:261–272.

    Google Scholar 

  • Katz, S. H., M. L. Heddiger, and L. A. Valleroy. 1974. Traditional maize processing techniques in the New World. Science 184:765–773.

    Article  PubMed  CAS  Google Scholar 

  • Kellerman, W. A. 1895. Primitive corn. Meehan’s Monthly 5:44, 53.

    Google Scholar 

  • Kempton, J. H. 1937. Maize—our heritage from the Indian. Smithsonian Report for 1937:385-408, 30 plates. Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Kiesselbach, T. A. 1980 [1949]. The Structure and Reproduction of Corn. University of Nebraska Press. Lincoln.

    Google Scholar 

  • Langman, I. K. 1964. A Selected Guide to the Literature on the Flowering Plants of Mexico. University of Pennsylvania Press, Philadelphia.

    Google Scholar 

  • Lieberman, M., and D. Lieberman. 1980. The origin of gardening as an extension of infra-human dispersal. Biotropica 12(4):316.

    Article  Google Scholar 

  • Long, A., B. F. Benz, D. J. Donahue, A. J. T. Jull, and H. J. Toolin. 1989. First direct AMS dates on early maize from Tehuacán, Mexico. Radiocarbon 31:1035–1040.

    Google Scholar 

  • Mangelsdorf, P. C. 1974. Corn: its Origin, Evolution and Improvement. Belknap Press of Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • —. 1986. The origin of corn. Scientific American 255(2):80–86.

    Article  Google Scholar 

  • —,R. S. MacNeish, and W. C. Galinat. 1967. Prehistoric wild and cultivated maize. Pages 178–200in D. S. Byers, ed., The Prehistory of the Tehuacán Valley, vol. I: Environment and Subsistence. University of Texas Press, Austin, Texas.

    Google Scholar 

  • —,and R. G. Reeves. 1939. The origin of Indian corn and its relatives. Texas Agricultural Experiment Station Bulletin 574:1–315.

    Google Scholar 

  • McClintock, B., A. Kato, and A. Blumenschein. 1981. Chromosome Constitution of Races of Maize. Its Significance in the Interpretation of Relationships between Races and Varieties in the Americas. Colégio de Postgraduados, Chapingo, Mexico.

    Google Scholar 

  • McVaugh, R. 1998. Botanical results of the Sessé and Mociño expedition (1787–1803). VI. Reports and records from western Mexico, 1790–1792. Boletin, Institute Botanica, Universidad de Guadalajara 6(1):1–178.

    Google Scholar 

  • Meyer, F. G., E. E. Trueblood, and J. L. Heller. 1999. Pages 565-566, 623-626, and plate facing page 650in Vol. I, Commentary, The Great Herbal of Leonhart Fuchs … 1542. [Vol. II, Facsimile of L. Fuchs, De Historia Stirpium …] Stanford University Press, Stanford, California.

    Google Scholar 

  • Miranda, C. S. 1966. Discusion sobre el origen y la evolucion del maize. Pages 233–251in Memorias del Segundo Congreso National de Fitogenetica, Monterrey, N. L. Escuela Nacional de Agriculture, Colegio de Postgraduados, Chapingo, Mexico.

    Google Scholar 

  • Montgomery, E. G. 1906. What is an ear of corn? Popular Scientific Monthly 68:55–62.

    Google Scholar 

  • Orr, A. R., and M. D. Sundberg. 1994. Inflorescence development in a perennial teosinte:Zea perennis. American Journal of Botany 81:598–608.

    Article  Google Scholar 

  • Peterson, P. A., and A. Bianchi. 1999, eds. Maize Genetics and Breeding in the 20th Century: World Scientific Publishing, Singapore.

    Google Scholar 

  • Peterson, J., and D. Peterson. 1998. Eat Smart in Mexico. Ginkgo Press, Madison, Wisconsin.

    Google Scholar 

  • Reed, C. A., ed. 1977. The Origins of Agriculture. Mouton, The Hague.

    Google Scholar 

  • Reeves, R. G., and P. C. Mangelsdorf. 1942. A proposed taxonomic change in the tribe Maydeae (Family Gramineae). American Journal of Botany 29:815–817.

    Article  Google Scholar 

  • Richey, F. D., and G. F. Sprague. 1932. Some factors affecting the reversal of sex expression in the tassels of maize. American Naturalist 66:433–443.

    Article  Google Scholar 

  • Ritchie, S. W., J. J. Hanway, and G. O. Benson. 1986. How a corn plant develops. Special Report No. 48:1-21. Iowa State Univ. of Science and Technology. Cooperative Extension Service, Ames, Iowa.

    Google Scholar 

  • Robson, J. R., R. I. Ford, K. V. Flannery, and J. E. Konlande. 1976. The nutritional significance of maize and teosinte. Ecological Food Nutrition 4: 243–249.

    Article  CAS  Google Scholar 

  • Roush, W. 1996. Corn: a lot of change from a little DNA. Science 272:1993.

    Google Scholar 

  • Sanchez G., J. J., and L. Ordaz S. 1987.El Teocintle en Mexico. Systematic and Ecogeographic Studies on Crop Genepools No. 2. Teosinte in Mexico. IBPGR, Rome.

    Google Scholar 

  • Sattler, R. 1988. Homeosis in plants. American Journal of Botany 75:1606–1617.

    Article  Google Scholar 

  • Sauer, C. O. 1965. American agricultural origins: a consideration of nature and culture. Pages 121–144in J. Leighly, ed., Land and life. A Selection of the Writing of Carl Ortwin Sauer. University of California Press, Berkeley and Los Angeles.

    Google Scholar 

  • Sauer, J. D. 1993. Historical Geography of Crop Plants, a Select Roster. CRC Press, Boca Raton, Florida [Maize: 228–236].

    Google Scholar 

  • Schaffner, J. H. 1930. Sex reversal and the experimental production of neutral tassels inZea mays. Botanical Gazette 90:279–298.

    Article  Google Scholar 

  • —. 1935. Observations and experiments on sex in plants. Bulletin of the Torrey Botanical Club 62: 387–401.

    Article  Google Scholar 

  • Scheiner, S. M. 1999. Towards a more synthetic view of evolution. (Book review of Schlichting and Pigliucci, 1998. Phenotypic Evolution: a Reaction Norm Perspective.) American Journal of Botany 86:145–148.

    Article  Google Scholar 

  • Schumann, K. 1904. Mais und Teosinte. Pages 137–157in Urban, I. & P. Graebner, Festschrift für Paul Ascherson. Leipzig, Germany.

    Google Scholar 

  • Smith, B. D. 1997. The initial domestication ofCucurbita pepo in the Americas 10,000 years ago. Science 276:932–934.

    Article  CAS  Google Scholar 

  • —. 1998. Emergence of Agriculture. Rev. ed., Scientific American Library. W.H. Freeman, New York.

    Google Scholar 

  • Smith, J. S. C., M. M. Goodman, and C. W. Stuber. 1984. Variation within teosinte III. Numerical analysis of allozyme data. Economic Botany 38:97–114.

    Google Scholar 

  • Solomon, J. C. 1998. Specimen deaccessions from the Missouri Botanical Garden Herbarium during the tenure of Robert E. Woodson (1948-1963). Taxon 47:663–680.

    Article  Google Scholar 

  • Sundberg, M. D. 1990. Inflorescence development inZea diploperennis and related species. Maydica 35: 99–112.

    Google Scholar 

  • —,and J. F. N. Doebley. 1990. Developmental basis for the origin of polystichy in maize. Maize Genetics Cooperation Newsletter 64:21–22.

    Google Scholar 

  • —,C. La. Fargue, and D. A. Orr. 1995. Inflorescence development in the “standard exotic” maize, Argentine Popcorn (Poaceae). American Journal of Botany 82:64–74.

    Article  Google Scholar 

  • —,and A. R. Orr. 1986. Early inflorescence and floral development inZea diploperennis, diploperennial teosinte. American Journal of Botany 73: 1699–1712.

    Article  Google Scholar 

  • —,and A. R. Orr. 1990. Inflorescence development in two annual teosintes:Zea mays ssp.mexicana andZ. mays ssp.parviglumis. American Journal of Botany 77:141–152.

    Article  Google Scholar 

  • —,and A. R. Orr. 1996. Early inflorescence and floral development inZea mays land race Chapalote (Poaceae). American Journal of Botany 83: 1255–1265.

    Article  Google Scholar 

  • Vázquez-G., J. A., R. Cuevas G., T. S. Cochrane, H. H. Iltis, F. Santana M., and L. Guzman H. 1995. Flora de Manantlán: Plantas Vasculares de la Reserva de la Sierra de Manantlán, Jalisco-Colima, Mexico. Sida Botanical Miscellany 13: i-xxxvL, 1–315.

    Google Scholar 

  • Weatherwax, P. 1918. The evolution of maize. Bulletin of the Torrey Botanical Club 45:309–342.

    Article  Google Scholar 

  • —. 1923. The Story of the Maize Plant. University of Chicago Press, Chicago.

    Google Scholar 

  • —. 1935. The phylogeny ofZea mays. American Midland Naturalist 16:1–71.

    Article  Google Scholar 

  • Wilkes, H. G. 1967. Teosinte: The Closest Relative of Maize. The Bussey Institution, Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • —. 1970. Teosinte introgression in the maize of the Nobogame Valley. Botanical Museum Leaflets, Harvard University 22:297–311.

    Google Scholar 

  • —. 1977. Hybridization of maize and teosinte in Mexico and Guatemala and the improvement of maize. Economic Botany 31:254–293

    Google Scholar 

  • —. 1979. Mexico and Central America as a centre for the origin of agriculture and the evolution of maize. Crop Improvement 6(1):1–18.

    Google Scholar 

  • —. 1985. Teosinte, the closest relative of maize revisited. Maydica 30:209–223.

    Google Scholar 

  • —. 1986. Teosinte in Oaxaca, Mexico. Maize Genetics Cooperation Newsletter 60:29–30.

    Google Scholar 

  • —. 1989. Maize: domestication, racial evolution, and spread. Pages 440–455in D. R. Harris and G. C. Hillman, eds., Foraging and Farming. The Evolution of Plant Exploitation. Unwin Hyman, London.

    Google Scholar 

  • Wilson, E. O. 1996.In Search of Nature. Island Press, Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Homeotic Sexual Translocations And The Origin Of Maize (Zea Mays, Poaceae): A New Look At An Old Problem. Economic Botany 54(L):7-42, 2000.

Distinguished Economic Botanist address, presented to the 39th Annual Meeting of the Society for Economic Botany, University of Aarhus, Denmark, July 15, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iltis, H.H. Homeotic Sexual Translocations and the Origin of Maize (Zea Mays, Poaceae): A New look at an old problem. Econ Bot 54, 7–42 (2000). https://doi.org/10.1007/BF02866598

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02866598

Key Words

Navigation