Skip to main content
Log in

A survey of floral traits, breeding systems, floral visitors, and pollination systems of the angiosperms of the Juan Fernández Islands (Chile)

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

A survey of the reproductive features of the angiosperm flora of the Juan Fernández Archipelago (Chile) is presented to provide a species-based review of reproduction and pollination, to identify generalizations associated with these systems, to understand the evolution of these features, and to utilize these data to promote conservation. The collection of original data was extensive, based on our own fieldwork, and was combined with data from existing literature. Data recorded include habit, sexual system, flower size, shape, and color, and the hypothesized pollination system of the first colonizers. In addition, the data on compatibility, presence and type of dichogamy, observed floral visitors, presence of floral rewards, and currently known pollination systems are summarized. Pairwise comparisons of different features are tested for statistical association.

The flora is typically composed of perennials. The majority of the species have very small or small flowers. Inconspicuous flowers (i.e., a shape character describing flowers with no optical attraction) are widespread, as are dish-shaped flowers. Green is the most frequent flower color, followed by white and yellow. Most species are hermaphroditic, 9% are dioecious, and 9% are monoecious. Some 30% of the species are protandrous and 7% protogynous. Detailed studies of compatibility of about 14% of the flora indicate that 85% of these species are self-compatible (SC). Although most species studied are SC, their level of autogamy is low. Nevertheless, selfing mediated via geitonogamy is the most frequent mechanism of pollen transfer. Outcrossing is mainly achieved through dioecy and self-incompatibility (SI), promoted by dichogamy in the hermaphroditic flowers, and facilitated by wind pollination. About 55% of the species offer nectar rewards, and only 2% offer pollen rewards. Floral visitors are rare to uncommon. Two hummingbird species, one of them endemic, are considered as pollinators for 14 plant species. Flies, moths, and beetles are the native insect visitors to flowers, but they have been documented on only 11 plant species (7%). Even insect visits to these few species were rarely observed. Given the infrequent, irregular, and imprecise nature of native insect association with flowers, there is no certainty that any of the species are truly insect pollinated. Two species of introduced ants and a new endemic bee were recorded as well; however, neither is likely currently important to the pollination of the native flora species.

About 9% of the extant flora is currently bird pollinated, and we hypothesize that 47% is wind pollinated. However, we propose that most of the colonizers were ancestrally either insect or wind pollinated. There is association between a number of current floral features and the hypothesized pollination of colonizers. Therefore, to a large extent the flower color, shape, and size of the extant flora may express the pollination syndromes of colonizers rather than representing extant pollination. In addition, the presence of nectar in many species of extant flora does not necessarily indicate biotic pollination. Thus, studies of the reproductive biology on oceanic island plants need to be conducted species by species before broad generalizations can be made, because the observed features can be misleading.

Possible changes in the pollination system were assessed by comparison of species for which there are reliable data with the hypothesized pollination of their colonist progenitors. The wind-or bird-pollinated species have retained the pollination system of the colonizers. In other instances, species seem to bear a different pollination system: from ancestral insect systems to current hummingbird-or wind-pollination systems. The lack of alternative means of biotic pollination seems to have led in a number of instances to anemophily—in essence a default pollination system. The lack of strong selection pressure for wind pollination and the relative youth of the archipelago may help explain why the features associated with wind pollination in these species are not so obvious.

Because there are many recorded extinctions of vascular plants from islands versus those from continental areas, it is imperative to invest additional effort in protecting the remaining island species. Conservation or restoration programs cannot be effective without a deep and broad understanding of the reproductive biology of the plants. In order to conserve these plants, programs must involve a combination of reproductive and environmental measures. The ultimate fate of some species may depend on preserving the plant-hummingbird relationship, including the web of organisms that affect both plant and pollinator. The populations of introduced animals and weeds must be controlled. Experimentally produced allogamous seeds would enhance diversity in restoration programs. In addition, the preservation of habitat seems to be the central challenge to indirectly protect the unique island species.

Resumen

Se presenta un análisis de las características reproductivas de las angiospermas autóctonas del Archipiélago Juan Fernández (Chile). Los objetivos son: proveer una revisión a nivel de especie de las características de su reproducción y polinización; identificar generalizaciones asociadas con los sistemas reproductivos reconocidos; tratar de comprender la evolución de dichas características; y utilizar los datos obtenidos para promover la conservatión de las especies autóctonas. La recolección de datos originales fue extensa y está basada en nuestro propio trabajo de campo combinado con datos procedentes de la literatura existente. Los datos registrados incluyen hábito, sistema sexual, tamaño, forma y color de las flores, y el tipo supuesto de polinización de los primeros colonizadores. Además, se resumen los datos disponibles sobre compatibilidad, presencia y tipo de dicogamia, visitantes florales observados, presencia de recompensas florales, y sistemas de polinización actuales. Comparaciones de a pares de las distintas características estudiadas fueron analizadas para detectar posibles asociaciones estadísticas entre ellas.

La flora está típicamente compuesta por plantas perennes. La mayoría de las especies tienen flores muy pequeñas o pequeñas. Las flores inconspicuas (es decir con una forma que no presenta atracción óptica) están difundidas, así como lo están las flores abiertas en forma de disco. El color floral más frecuente es el verde, seguido por el bianco y el amarillo. La mayoria de las especies son hermafroditas, en tanto que 9% son dioicas y 9% monoicas. Alrededor del 30% de las especies son protándricas y 7% son protóginas. Estudios detallados de compatibilidad en alrededor del 14% de la flora indican que 85% de dichas especies son autocompatible. Si bien la mayoría de las especies estudiadas son auto-compatible, su nivel de autogamia es bajo. Sin embargo, autofecundación a través de geitonogamia es el mecanismo más frecuente de transferencia del polen. La fecundación cruzada es llevada a cabo principalmente por dioecia y auto-incompatibilidad, siendo promovida por dicogamia en las especies hermafroditas y facilitada por polinización por el viento.

Alrededor del 55% de las especies ofrecen néctar como recompensa, y sólo el 2% ofrecen polen. Dos especies de picaflores, una de ellas endémica, se consideran como polinizadores para 14 especies vegetales. Moscas, mariposas nocturnas, y escarabajos se han registrado como visitantes florales nativos en apenas 11 especies (7%), pero aún en estas pocas especies, las visitas de insectos fueron raramente observadas. Dadas la asociación infrecuente, irregular, e imprecisa de los insectos nativos con las flores, no hay certeza de que ninguna de las especies sea verdaderamente polinizada por insectos. Una especie de hormiga introducida y una nueva especie endémica de abeja fueron registradas asimismo; sin embargo, ninguna de ellas parece ser importante en la polinización actual de la flora autóctona.

Alrededor del 9% de la flora actual es polinizada por picaflores, y se calcula que 47% es polinizada por el viento. No obstante, se propone que la mayoría de los colonizadores originales eran ancestralmente polinizados por insectos o por el viento. Hay una estrecha asociación entre varias características florales actuales y la polinizacion que se supone tuvieron los colonizadores. Por ello, el color, la forma, y el tamano de las flores, en una gran medida, pueden expresar los síndromes de polinización de los colonizadores más que representar caracteres de la polinización actual. Además, la presencia de néctar en muchas especies de la presente flora no necesariamente indica polinización biótica. De este modo, estudios de biología reproductiva de plantas de islas oceánicas deberían ser realizados especie por especie, antes de que generalizaciones amplias puedan realizarse, porque las características observadas pueden conducir a conclusiones equivocadas.

Posibles cambios en los sistemas de polinización fueron evaluados comparando los sistemas actuales de aquellas especies para las cuales se cuenta con datos confiables y los supuestos sistemas de los progenitores que colonizaron las islas. Las especies polinizadas por el viento y los picaflores parecen haber retenido el sistema de polinización de los colonizadores. En otros casos, la especies muestran un sistema de polinización diferente: de sistemas de polinización ancestral por insectos a sistemas de polinización actual por picaflores o por el viento. La falta de medios alternativos de polinización biótica parece haber conducido, en un número de casos, a anemofilia (en esencia un sistema de polinizaciń por defecto). Tal vez, la falta de una presión de selección fuerte para polinización por el viento y la relativa juventud del archipiélago ayudan a explicar porque las características asociadas con polinización por el viento en estas especies pueden no ser tan obvias.

Dado que la mayoría de las extinciones registradas de plantas vasculares han ocurrido en islas y no en continentes, es imperativo invertir un esfuerzo adicional para proteger las especies que aún quedan en las islas. Los programas de conservación o de restauración no pueden ser efectivos sin un profundo y amplio conocimiento de la biología reproductiva de las plantas implicadas. Para conservar estas especies vegetales, los programas deben involucrar una combinación de medidas reproductivas y ambientales. El destino de varias especies depende de la preservación de las relaciones planta-picaflor, incluyendo la red de organismos que afectan a ambos. Las poblaciones de animales introducidos y malezas deben ser controlados. Semillas alógamas producidas experimentalmente aumentarían la diversidad en programas de restauración. Además, la preservación del hábitat parece ser el desafío central para proteger indirectamente las singulares especies propias de islas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Aizen, M. A. &C. Ezcurra. 1998. High incidence of plant-animal mutualisms in the woody flora of the temperate forest of Southern South America: Biogeographical origin and present ecological sig-nificance. Ecol. Austral 8: 217–236.

    Google Scholar 

  • Allen, D. 1984. Threatened ‘protected natural areas’ of the world. Environ. Conservation 12: 77.

    Google Scholar 

  • Anderson, G. J., G. Bernardello, P. López S., T. F. Stuessy &D. J. Crawford. 2000a. Dioecy and wind pollination inPernettya rigida (Ericaceae) of the Juan Fernández Islands. Bot. J. Linn. Soc. 132: 121–141.

    Google Scholar 

  • ——,P. López S., D. J. Crawford &T. D. Stuessy. 2000b. Reproductive biology ofWahlen-bergia (Campanulaceae) endemic to Robinson Crusoe Island (Chile). Pl. Syst. & Evol. 233: 109–123.

    Google Scholar 

  • ——,T. F. Stuessy &D. J. Crawford. 2001a. Breeding system and pollination of selected plants endemic to the Juan Fernández Islands. Amer. J. Bot. 88: 220–233.

    Google Scholar 

  • ——, &M. S. Engel. 2001b. A newly discovered bee species on Isla Robinson Crusoe of the Juan Fernández Islands (Chile): Conservation implications. Conservation Biol. 15: 803–805.

    Google Scholar 

  • Armesto, J. J., C. Smith Ramírez &C. Sabag. 1996. The importance of plant-bird mutualism in the temperate rainforest of southern South America. Pp. 248–265in R. G. Lawford, P. B. Alaback & E. R. Fuentes (eds.), High-latitude rainforests and associated ecosystems of the west coast of the Americas: Climate, hydrology, ecology, and conservation. Springer-Verlag, New York.

    Google Scholar 

  • Arroyo, M. T. K. 1981. Breeding systems and pollination biology in Leguminosae. Pp. 723–769in R. M. Polhill & P. H. Raven (eds.), Advances in Legume Systematics. Royal Botanic Gardens, Kew.

    Google Scholar 

  • — &F. A. Squeo. 1987. Experimental detection of anemophily inPernettya mucronata (Ericaceae) in western Patagonia, Chile. Bot. Jahrb. Syst. 108: 537–546.

    Google Scholar 

  • — &P. Uslar. 1993. Breeding systems in a temperate Mediterranean-type climate montane sclerophyllous forest in central Chile. Bot. J. Linn. Soc. 111: 83–102.

    Google Scholar 

  • Baker, H. G. 1955. Self-compatibility and establishment after “long-distance” dispersal. Evolution 9: 347–349.

    Google Scholar 

  • —. 1959. Reproductive methods as factors in speciation of flowering plants. Cold Spring Harbor Symp. Quant. Biol. 24: 177–191.

    PubMed  CAS  Google Scholar 

  • —. 1967. Support for Baker’s law as a rule. Evolution 21: 853–856.

    Google Scholar 

  • — &I. Baker. 1983a. A brief historical review of the chemistry of floral nectar. Pp. 126–152in B. Bentley & T. S. Elias (eds.), The biology of nectaries. Columbia Univ. Press, New York.

    Google Scholar 

  • ——. 1983b. Floral nectar sugar constituents in relation to pollinator type. Pp. 117–141in C. E. Jones & R. J. Little (eds), Handbook of experimental pollination biology. Van Nostrand Reinhold, New York.

    Google Scholar 

  • ——. 1990. The predictive value of nectar chemistry to the recognition of pollinator types. Israel J. Bot. 39: 157–166.

    CAS  Google Scholar 

  • — &P. A. Cox. 1984. Further thoughts on dioecism and islands. Ann. Missouri Bot. Gard. 71: 244–253.

    Google Scholar 

  • Baldwin, B. G. 1997. Adaptive radiation of the Hawaiian silversword alliance: Congruence and conflict of phylogenetic evidence from molecular and ncn-molecular investigations. Pp. 103–128in T. J. Givnish & K. J. Systma (eds.), Molecular evolution and adaptive radiation. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Barrett, S. C. H. 1998. The reproductive biology and genetics of island plants. Pp. 18–34in P. R. Grant (ed.), Evolution on islands. Oxford Univ. Press, Oxford.

    Google Scholar 

  • — &J. R. Kohn. 1991. Genetic and evolutionary consequences of small population size in plants: Implications for conservation. Pp. 3–30in D. A. Falk & K. E. Holsinger (eds.), Genetics and conservation of rare plants. Oxford Univ. Press, New York.

    Google Scholar 

  • Bawa, K. S. 1980. Evolution of dioecy in flowering plants. Ann. Rev. Ecol. Syst. 11: 15–39.

    Google Scholar 

  • Bell, A. D. 1991. Plant form: An illustrated guide to flowering plant morphology. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Bernardello, G., L. Galetto &H. R. Juliani. 1991. Nectar and nectary structure in some ArgentineanBromeliaceae. Ann. Bot. (London) 67: 401–411.

    CAS  Google Scholar 

  • —,G. J. Anderson, P. López S., M. A. Cleland, T. F. Stuessy &D. J. Crawford. 1999. Reproductive biology ofLactoris fernandeziana (Lactoridaceae). Amer. J. Bot. 86: 829–840.

    Google Scholar 

  • —,L. Galetto &G. J. Anderson. 2000. Floral nectary structure and nectar chemical composition of some species from Robinson Crusoe Island (Chile). Canad. J. Bot. 78: 862–872.

    CAS  Google Scholar 

  • Berry, P. E. &R. N. Calvo. 1989. Wind pollination, self-incompatibility, and altitudinal shifts in pollination systems in the high Andean genusEspeletia (Asteraceae). Amer. J. Bot. 76: 1602–1614.

    Google Scholar 

  • Böhle, U. R., H. H. Hilger &W. F. Martin. 1996. Island colonization and evolution of the insular woody habit inEchium L. (Boraginaceae). Proc. Natl. Acad. Sci. U.S.A. 93: 11740–11745.

    PubMed  Google Scholar 

  • Bourne, W. R. P., M. de L. Brooke, G. S. Clarke &T. Stone. 1992. Wildlife conservation problems in the Juan Fernandez Archipelago, Chile. Oryx 26: 43–51.

    Google Scholar 

  • Bowman, R. I., M. Berson &A. E. Leviton (eds.). 1983. Patterns of evolution in Galapagos organisms. Pacific Division, AAAS, San Francisco.

    Google Scholar 

  • Bramwell, D. 1972. Endemism in the flora of the Canary Islands. Pp. 141–159in D. H. Valentine (ed.), Taxonomy, phytogeography, and evolution. Academic Press, London and New York.

    Google Scholar 

  • — (ed.). 1979. Plants and islands. Academic Press, London.

    Google Scholar 

  • Britton-Davidian, J., J. Catalan, M. G. Ramalhinho, G. Ganem, J.C. Auffray, R. Capela, M. Biscoito, J. B. Searle &M. L. Mathias. 2000. Rapid chromosomal evolution in island mice. Nature 405: 158.

    Google Scholar 

  • Brooke, M. de L. 1987. The birds of the Juan Fernandez Islands, Chile. International Council for Bird Preservation, Fauna and Flora Preservation Society, World Wildlife Fund, Cambridge, England.

    Google Scholar 

  • Buchmann, S. L. &G. P. Nabhan. 1996. The forgotten pollinators. Island Press, Washington, DC.

    Google Scholar 

  • Carlquist, S. 1965. Island life: A natural history of the islands of the world. Natural History Press, Garden City, NY.

    Google Scholar 

  • —. 1966. The biota of long-distance dispersal, IV: Genetic systems in the floras of oceanic islands. Evolution 20: 433–455.

    Google Scholar 

  • —. 1974. Island biology. Columbia Univ. Press, New York.

    Google Scholar 

  • —. 1998. Shifting paradigms in island biology. Aliso 16: 85–88.

    Google Scholar 

  • Carpenter, F. L. 1976. Plant-pollinator interactions in Hawaii: Pollination energetics ofMetrosideros collina (Myrtaceae). Ecology 57: 1125–1144.

    Google Scholar 

  • Carr, G. D., E. A. Powell &D. W. Kyhos. 1986. Self-incompatibility in the Hawaiian Madiinae (Compositae): An exception to Baker’s rule. Evolution 40: 430–434.

    Google Scholar 

  • Colwell, R. K. 1989. Hummingbirds of the Juan Fernandez Islands: Natural history, evolution and population status. Ibis 131: 548–566.

    Google Scholar 

  • Conn, J. S., T. R. Wentworth &U. Blum. 1980. Patterns of dioecism in the flora of the Carolinas. Amer. Midl. Naturalist 103: 310–315.

    Google Scholar 

  • Connor, H. E. 1988. Breeding systems in New Zealand grasses, X: Species atrisk for conservation. New Zealand J. Bot. 26: 163–167.

    Google Scholar 

  • Corn, C. A. 1979. Variation in HawaiianMetrosideros. Ph.D. diss., Univ. of Hawaii, Honolulu.

    Google Scholar 

  • Cory, C. 1984. Pollination biology of two species of Hawaiian Lobeliaceae (Clermontia kakeana andCyanea angustifolia) and their presumed co-evolved relationship with native honeycreepers (Drepanididae). M.A. thesis, California State Univ., Fullerton.

    Google Scholar 

  • Crawford, D. J. 1990. Plant molecular systematics: Macromolecular approaches. Wiley, New York.

    Google Scholar 

  • —,T. F. Stuessy, T. G. Lammers, M. Silva O. &P. Pacheco. 1990. Allozyme variation and evolutionary relationships among three species ofWahlenbergia (Campanulaceae) in the Juan Fernandez Islands. Bot. Gaz. 151: 119–124.

    CAS  Google Scholar 

  • —,T. Sang, T. F. Stuessy, S.-C. Kim &M. Silva O. 1998.Dendroseris (Asteraceae: Lactuceae) andRobinsonia (Asteraceae: Senecioneae) on the Juan Fernandez Islands: Similarities and differences in biology and phylogeny. Pp. 97–119in T. F. Stuessy & M. Ono (eds.), Evolution and speciation of island plants. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Cronk, Q. C. B. 1997. Islands: Stability, diversity, conservation. Biodiv. & Conserv. 6: 477–493.

    Google Scholar 

  • Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia Univ. Press, New York.

    Google Scholar 

  • Cruden, R. W., S. M. Hermann &S. Peterson. 1983. Patterns of nectar production and plant-pollinator coevolution. Pp. 80–125in B. Bentley & T. S. Elias (eds.), The biology of nectaries. Columbia Univ. Press, New York.

    Google Scholar 

  • Darwin, C. 1859. The origin of species by means of natural selection. John Murray, London.

    Google Scholar 

  • Davis, S. D., V. H. Heywood &A. C. Hamilton (eds.). 1995. Centres of plant diversity: A guide and strategy for their conservation. World Wide Fund for Nature and IUCN-the World Conservation Union, Cambridge, England.

    Google Scholar 

  • Docters van Leeuwen, W. M. 1936. Krakatau, 1883 to 1933. A. Botany. Ann. Jard. Bot. Buitenzorg 46-47: 1–506.

    Google Scholar 

  • Ehrendorfer, F. 1979. Reproductive biology in island plants. Pp. 293–306in D. Bramwell (ed.), Plants and islands. Academic Press, London.

    Google Scholar 

  • Einarsson, E. 1967. The colonization of Surtsey, the new volcanic island, by vascular plants. Aquilo, Ser. Botanica 6: 172–182.

    Google Scholar 

  • Engel, M. S. 2000. A newLasioglossum from the Juan Fernandez Islands (Hymenoptera: Halictidae). Rev. Chilena Entomol. 27: 5–10.

    Google Scholar 

  • Faegri, K. &L. van der Pijl. 1979. The principles of pollination ecology. Ed. 3, rev. Pergamon Press, Oxford, England.

    Google Scholar 

  • Francisco-Ortega, J., D. J. Crawford, A. Santos-Guerra &R. K. Jansen. 1997. Origin and evolution ofArgyranthemum (Asteraceae: Anthemideae) in Macaronesia. Pp. 407–431in T. J. Givnish & K. J. Systma (eds.), Molecular evolution and adaptive radiation. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Frankham, R. 1997. Do island populations have less genetic variation than mainland populations? Heredity 78: 311–327.

    PubMed  Google Scholar 

  • Freeman, D. C., K. T. Harper &W. K. Ostler. 1980. Ecology of plant dioecy in the intermountain region of western North America and California. Oecologia 44: 410–417.

    Google Scholar 

  • Galetto, L., L. Bernardello &H. R. Juliani. 1993. Estructura del nectario, compositión química del néctar y mecanismo de polinizaciń en tres especies deSiphocampylus (Campanulaceae). Kurtziana 22: 81–96.

    Google Scholar 

  • Gay, C. 1845–1854. Historia física y política de Chile según documentas adquiridos en esta república durante doce años de residencia en ella y publicada bajo los auspicios del supremo gobierno: Botánica. Private publication, Paris.

    Google Scholar 

  • Gillett, G. W. &E. K. S. Lim. 1970. An experimental study of the genusBidens (Asteraceae) in the Hawaiian Islands. Univ. Calif. Publ. Bot. 56: 1–63.

    Google Scholar 

  • Givnish, T. J. 1998. Adaptive plant evolution on islands: Classical patterns, molecular data, new insights. Pp. 281–304in P. R. Grant (ed.), Evolution on islands. Oxford Univ. Press, Oxford.

    Google Scholar 

  • —,K. J. Sytsma, W. J. Hahn &J. F. Smith. 1995. Molecular evolution, adaptive radiation, and geographic speciation inCyanea (Campanulaceae, Lobelioideae). Pp. 299–337in W. L. Wagner & V. A. Funk (eds), Hawaiian biogeography: Evolution on a hot-spot archipelago. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Godley, E. J. 1979. Flower biology in New Zealand. New Zealand J. Bot. 17: 441–466.

    Google Scholar 

  • Grant, B. R. &P. R. Grant. 1981. Exploitation ofOpuntia cactus by birds in the Galápagos. Oecologia 49: 179–187.

    Google Scholar 

  • Grant, P. R. (ed.). 1998. Evolution on islands. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Hagerup, O. 1932. On pollination in the extremely hot air in Timbuctu. Dansk Bot. Ark. 8: 1–20.

    Google Scholar 

  • —. 1951. Pollination in the Faroes—in spite of rain and poverty in insects. Biol. Meddel. Kongel. Danske Vidensk. Selsk. 18: 1–48.

    Google Scholar 

  • Hamrick, J. L., M. J. W. Godt, D. A. Murrawski &M. D. Loveless. 1991. Correlations between species traits and allozyme diversity: Implications for conservation biology. Pp. 75–86in D. A. Falk & K. E. Holsinger (eds.), Genetics and conservation of rare plants. Oxford Univ. Press, New York.

    Google Scholar 

  • Hemsley, W. B. 1884. Report on the botany of Juan Fernandez, the south-eastern Moluccas, and the Admiralty Islands. Rep. Sci. Results Voyage H.M.S. Challenger. Botany 1(3): 1–275.

    Google Scholar 

  • Hernández, H. M. 1981. Sobre la ecología reproductiva deN. glauca Grah., una maleza de distribución cosmopolita. Bol. Soc. Bot. Mexico 41: 47–73.

    Google Scholar 

  • Holsinger, K. E. 1991. Conservation of genetic diversity in rare and endangered plants. Pp. 626–633in E. C. Dudley (ed.), The unity of evolutionary biology. Dioscorides Press, Portland, OR.

    Google Scholar 

  • Hooker, J. D. 1853. Introductory essay to the flora of New Zealand. Flora Novae-Zelandiae. Part I. L. Reeve, London.

    Google Scholar 

  • Inoue, K. 1993. Evolution of mutualism in plant-pollinator interactions on islands. J. Biosci. 18: 525–536.

    Google Scholar 

  • Jaksic, F. M. 1998. Vertebrate invaders and their ecological impacts in Chile. Biodiv. & Conserv. 7: 1427–1445.

    Google Scholar 

  • Johow, F. 1896. Estudios sobre la flora de las islas de Juan Fernández. Private publication, Santiago, Chile.

    Google Scholar 

  • Juan, J. &A. de Ulloa. 1813. A voyage to South America. Pp. 313–696in J. Pinkerton (ed.), A general collection of the best and most interesting voyages and travels in all parts of the world. Vol. 13. Longman, Hurst, Rees, and Orme, London.

    Google Scholar 

  • Karron, J. D. 1987. A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners. Evol. Ecol. 1: 47–58.

    Google Scholar 

  • —. 1991. Patterns of genetic variation and breeding systems in rare plant species. Pp. 87–98in D. A. Falk & K. E. Holsinger (eds.), Genetics and conservation of rare plants. Oxford Univ. Press, New York.

    Google Scholar 

  • Kearns, C. A., D. W. Inouye &N. M. Waser. 1998. Endangered mutualisms: The conservation of plant-pollinator interactions. Ann. Rev. Ecol. Syst. 29: 83–112.

    Google Scholar 

  • Keast, A. &S. E. Miller. 1996. The origin and evolution of Pacific Island biotas, New Guinea to Eastern Polynesia: Patterns and processes. SPB Academic Publishing, Amsterdam.

    Google Scholar 

  • Kim, S.C., D. J. Crawford, J. Francisco- Ortega &A. Santos Guerra. 1996. A common origin for woodySonchus and five related genera in the Macaronesian Islands: Molecular evidence for extensive radiation. Proc. Natl. Acad. Sci. U.S.A. 93: 7743–7748.

    PubMed  CAS  Google Scholar 

  • Kores, P. J. 1979. Taxonomy and pollination in the wild Hawaiian orchids. M.S. thesis, Univ. of Hawaii, Honolulu.

    Google Scholar 

  • Kunin, W. E. 1997. Population biology and rarity: On the complexity of density dependence in insectplant interactions. Pp. 150–173in W. E. Kunin & K. J. Gaston (eds.), The biology of rarity: Causes and consequences of rare-common differences. Chapman & Hall, London.

    Google Scholar 

  • Kuschel, G. 1952. Los insectos de las islas Juan Fernández: Introducción. Rev. Chilena Entomol. 2: 3–6.

    Google Scholar 

  • Lammers, T. G. 1996. Phylogeny, biogeography, and systematics of theWahlenbergia fernandeziana complex (Campanulaceae: Campanuloideae). Syst. Bot. 21: 397–415.

    Google Scholar 

  • Lawesson,J. E.,O. Hamman,G. Rogers,G. Reck & H. Ochoa (eds.). 1990. Botanical research and management in Galapagos: Proceedings of the Workshop on Botanical Research and Management in Galápagos held 11–18 April 1987 at the Charles Darwin Research Station, Santa Cruz, Galápagos, Ecuador. Monogr. Syst. Bot. 32. Missouri Bot. Gard. 32, St. Louis, MO.

  • Linnaeus, C. 1747. Flora Zeylanica. Private publication, Stockholm.

    Google Scholar 

  • Lloyd, D. G. 1985. Progress in understanding the natural history of New Zealand plants. New Zealand J. Bot. 23: 707–722.

    Google Scholar 

  • —. 1992. Self-and cross-fertilization in plants, II: The selection of self-fertilization. Int. J. Pl. Sci. 153: 370–380.

    Google Scholar 

  • — &D. J. Schoen. 1992. Self-and cross-fertilization in plants, I: Functional dimensions. Int. J. Pl. Sci. 153: 358–369.

    Google Scholar 

  • — &J. M. A. Yates. 1982. Intrasexual selection and the segregation of pollen and stigmas in hermaphrodite plants, exemplified byWahlenbergia albomarginata (Campanulaceae). Evolution 36: 903–913.

    Google Scholar 

  • Loope, L. L., O. Hamman &C. P. Stone. 1988. Comparative conservation biology of oceanic archipelagos. BioScience 38: 272–282.

    Google Scholar 

  • Lowrey, T. K. &D. J. Crawford. 1985. Allozyme divergence and evolution inTetramolopium (Compositae: Astereae) on the Hawaiian Islands. Syst. Bot. 10: 64–72.

    Google Scholar 

  • MacArthur, R. H. &E. O. Wilson 1967. The theory of island biogeography. Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • MacDonald, I. A. W. &J. Cooper. 1995. Insular lessons for global biodiversity conservation with particular reference to alien invasions. Pp. 189–203in P. M. Vitousek, L. L. Loope & H. Adsersen (eds.), Islands: Biological diversity and ecosystem function. Ecological studies, 115. Springer-Verlag, Berlin.

    Google Scholar 

  • Marticorena, C., T. F. Stuessy &C. M. Baeza. 1998. Catalogue of the vascular flora of the Robinson Crusoe or Juan Fernández Islands, Chile. Gayana, Bot. 55: 187–211.

    Google Scholar 

  • McMullen, C. K. 1987. Breeding systems of selected Galapagos Islands angiosperms. Amer. J. Bot. 74: 1694–1705.

    Google Scholar 

  • —. 1989. Flowering colonizers of the Galapagos Islands: Drab but not dull. Pl. Today 2: 192–196.

    Google Scholar 

  • — 1990. Reproductive biology of Galapagos Islands angiosperms. Monogr. Syst. Bot. Missouri Bot. Gard. 32: 35–45.

    Google Scholar 

  • —. 1999. Flowering plants of the Galápagos. Cornell Univ. Press, Ithaca, NY.

    Google Scholar 

  • — &D. D. Close. 1993. Wind pollination in the Galapagos Islands. Not. Galapagos 52: 12–17.

    Google Scholar 

  • Meza, H. J. 1988. Conservación del picaflor de Juan Fernández: Informe annual. CONAF, V Región, Valparaiso, Chile.

    Google Scholar 

  • Mittermeier, R. A., N. Myers &C. Goetsch Mittermeier. 1999. Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. Cemex, Mexico City.

    Google Scholar 

  • Moore, D. M. 1983. Flora of Tierra del Fuego. Oswestry, England, and Missouri Bot. Gard., Saint Louis, MO.

  • Mueller-Dombois, D., K. W. Bridges &H. L. Carson. 1981. Island ecosystems. Hutchinson Ross Publishing Co., Stroudsburg, PA.

    Google Scholar 

  • Muenchow, G. E. 1987. Is dioecy associated with fleshy fruit? Amer. J. Bot. 74: 287–293.

    Google Scholar 

  • Nabhan, G. P., G. Allen-Wardell, R. Bitner, A. Burquez, S. Buchmann, J. Cane, P. A. Cox, V. Dalton, P. Feinsinger, M. Ingram, D. Inouye, C. E. Jones, K. Kennedy, P. Kevan, H. Koopowitz, R. Medellin &S. Medellin-Morales. 1998. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conservation Biol. 12: 8–17.

    Google Scholar 

  • Nunn, P. D. 1994. Oceanic islands. Blackwell Publishers, Oxford, England.

    Google Scholar 

  • Oliver, W. R. 1935. The genusCoprosma. Bernice P. Bishop Mus. Bull. 132: 1–207.

    Google Scholar 

  • Pandey, K. K. 1979. Long-distance dispersal and self-incompatibility. New Zealand J. Bot. 17: 225–226.

    Google Scholar 

  • Panero, J. L., J. Francisco- Ortega, R. K. Jansen &A. Santos Guerra. 1999. Molecular evidence for multiple origins of woodiness and a New World biogeographic connection of the Macaronesian Island endemicPericallis (Asteraceae: Senecioneae). Proc. Natl. Acad. Sci. U.S.A. 96: 13886–13891.

    PubMed  CAS  Google Scholar 

  • Perry, R. (ed.). 1984. Galápagos. Pergamon Press, Oxford.

    Google Scholar 

  • Petterson, J. A. 1997. Revision of the genusWahlenbergia (Campanulaceae) in New Zealand. New Zealand J. Bot. 35: 9–54.

    Google Scholar 

  • Porter, D. M. 1983. Vascular plants of the Galapagos: Origins and dispersal. Pp. 33–96in R. I. Bowman, M. Berson & A. E. Leviton (eds.), Patterns of evolution in Galapagos organisms. Pacific Division, AAAS, San Francisco.

    Google Scholar 

  • Pyke, G. H. &N. M. Waser. 1981. The production of dilute nectars by hummingbird and honeyeater flowers. Biotropica 13: 260–270.

    Google Scholar 

  • Rabakonandrianina, E. 1980. Infrageneric relationships and the origin of the Hawaiian endemic genusLipochaeta (Compositae). Pacific Sci. 34: 29–39.

    Google Scholar 

  • Ramanna, M. S. &G. T. Hermsen. 1981. Structural hybridity in the seriesEtuberosa of the genusSolarium and its bearing on crossability. Euphytica 30: 15–81.

    Google Scholar 

  • Raven, P. H. 1998. Plant conservation in a changing world. Aliso 16: 121–126.

    Google Scholar 

  • Regal, P. J. 1982. Pollination by wind and animals: Ecology of geographic patterns. Ann. Rev. Ecol. Syst. 13: 497–524.

    Google Scholar 

  • Reiche, C. 1896–1911. Flora de Chile. Imprenta Cervantes, Santiago, Chile.

    Google Scholar 

  • Reid, W. V. &K. R. Miller. 1989. Extinction: How serious a threat? Pp. 31–56in W. V. Reid & K. R. Miller (eds.), Keeping options alive: The scientific basis for conserving biodiversity. World Resources Institute, Washington, DC.

    Google Scholar 

  • Ricci, M. &L. Eaton. 1994. The rescue ofWahlenbergia larrainii in Robinson Crusoe Island, Chile. Biol. Conservation 68: 89–93.

    Google Scholar 

  • Richards, A. J. 1997. Plant breeding systems. Ed. 2. Chapman & Hall, London.

    Google Scholar 

  • Rick, C. M. 1966. Some plant-animal relations on the Galápagos Islands. Pp. 215–224in R. I. Bowman (ed.), The Galápagos: Proceedings of the symposia of the Galápagos International Scientific Project. Univ. of California Press, Berkeley and Los Angeles.

    Google Scholar 

  • Rivera, G. L., L. Galetto &L. Bernardello. 1996. Nectar secretion pattern, removal effects, and breeding system ofLigaria cuneifolia (Loranthaceae). Canad. J. Bot. 74: 1996–2001.

    Google Scholar 

  • Roelofs, F. M. 1979. The reproductive biology ofCyrtandra grandiflora (Gesneriaceae) on Oahu. Pacific Sci. 33: 223–231.

    Google Scholar 

  • Roy, M. S., J. C. Torres-Mura &F. Hertel. 1998. Evolution and history of hummingbirds (Aves: Trochilidae) from the Juan Fernandez Islands, Chile. Ibis 140: 265–273.

    Google Scholar 

  • ———M. Lemus &R. Sponer. 1999. Conservation of the Juan Fernandez firecrown and its island habitat. Oryx 33: 223–232.

    Google Scholar 

  • Sakai, A., W. L. Wagner, D. M. Ferguson &D. R. Herbst. 1995a. Origins of dioecy in the Hawaiian flora. Ecology 76: 2517–2529.

    Google Scholar 

  • ————. 1995b. Biogeographical and ecological correlates of dioecy in the Hawaiian flora. Ecology 76: 2530–2543.

    Google Scholar 

  • —,S. G. Weiler, W. L. Wagner, P. S. Soltis &D. E. Soltis. 1997. Phylogenetic perspectives on theevolution of dioecy: Adaptive radiation in the endemic Hawaiian generaSchiedea andAlsinidendron (Caryophyllaceae: Alsinoideae). Pp. 455–473in T. J. Givnish & K. J. Systma (eds.), Molecular evolution and adaptive radiation. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Sanders, R. W., T. F. Stuessy &C. Marticorena. 1982. Recent changes in the flora of the Juan Fernandez Islands, Chile. Taxon 31: 284–289.

    Google Scholar 

  • ——— &M. Silva O. 1987. Phytogeography and evolution ofDendroseris andRobin-sonia, tree-Compositae of the Juan Fernandez Islands. Opera Bot. 92: 195–215.

    Google Scholar 

  • Shelvocke, G. 1726. A voyage round the world by way of the great South Sea. J. Senex, London.

    Google Scholar 

  • Skottsberg, C. 1921. The phanerogams of the Juan Fernandez islands. Pp. 95–240in C. Skottsberg (ed.), The natural history of Juan Fernandez and Easter Island. Vol. 2, Botany. Almqvist & Wiskell, Uppsala, Sweden.

    Google Scholar 

  • —. 1928. Pollinationsbiologie und Samenverbreitung auf den Juan Fernandez Inseln. Pp. 503–547in C. Skottsberg (ed.), The natural history of Juan Fernandez and Easter Island. Vol. 2, Botany. Almqvist & Wiskell, Uppsala, Sweden.

    Google Scholar 

  • —. 1953. A supplement to the pteridophytes and phanerogams of Juan Fernandez and Easter Island. Pp. 763–792in C. Skottsberg (ed.), The natural history of Juan Fernandez and Easter Island. Vol. 2, Botany. Almqvist & Wiskell, Uppsala, Sweden.

    Google Scholar 

  • —. 1957. Une seconde espèce deCentaurodendron Johow. Bull. Jard. Bot. État 27: 585–589.

    Google Scholar 

  • Sloane, H. 1707-1725. A voyage to the islands: Madeira, Barbados, Nieves, St. Christophers and Jamaica. Private publication, London.

    Google Scholar 

  • Smith, F. D. M., R. M. May, R. Pellew, T. H. Johnson &K. R. Walter. 1993. How much do we know about the current extinction rate? Trends Ecol. Evol. 8: 375–378.

    Google Scholar 

  • Smith Ramírez, C. 1993. Los picaflores y su recurso floral en el bosque templado de la isla Chiloé, Chile. Rev. Chilena Hist. Nat. 66: 65–73.

    Google Scholar 

  • Stebbins, G. L. 1957. Self-fertilization and population variability in the higher plants. Amer. Naturalist 41: 337–354.

    Google Scholar 

  • —. 1970. Adaptive radiation of reproductive characteristics in angiosperms, I: Pollination mechanisms. Ann. Rev. Ecol. Syst. 1: 307–326.

    Google Scholar 

  • Steiner, K. E. 1988. Dioecism and its correlates in the Cape flora of South Africa. Amer. J. Bot. 75: 1742–1754.

    Google Scholar 

  • Stephens, S. G. 1964. Native Hawaiian cotton (Gossypium tomentosum Nutt.). Pacific Sci. 18: 385–398.

    Google Scholar 

  • Stokes, M. E., C. S. Davis &G. G. Koch. 1995. Categorical data analysis using the SAS System. SAS Institute, Cary, NC.

    Google Scholar 

  • Strid, A. 1970. Studies in the Aegean flora, XVI: Biosystematics of theNigella arvensis complex. Opera Bot. 28: 1–169.

    Google Scholar 

  • Stuessy, T. F. 1995. Juan Fernandez Islands, Chile. Pp. 565–568in S. D. Davis, V. H. Heywood & A. C. Hamilton (eds.), Centres of plant diversity: A guide and strategy for their conservation. World Wide Fund for Nature and IUCN-the World Conservation Union, Cambridge, England.

    Google Scholar 

  • — &M. Ono (eds.). 1998. Evolution and speciation of island plants. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • —,K. A. Foland, J. F. Sutter, R. W. Sanders &M. Silva O. 1984. Botanical and geological significance of potassium-argon dates from the Juan Fernandez Islands. Science 225: 49–51.

    PubMed  CAS  Google Scholar 

  • —,U. Swenson, D. J. Crawford, G. J. Anderson &M. Silva O. 1997. Plant conservation in the Juan Fernandez Islands. Aliso 16: 89–102.

    Google Scholar 

  • —,D. J. Crawford, G. J. Anderson &R. J. Jensen. 1998a. Systematics, biogeography and conservation of Lactoridaceae. Perspect. Pl. Ecol. Evol. & Syst. 1–2: 267–290.

    Google Scholar 

  • —,U. Swenson, C. Marticorena, U. Matthei &D. J. Crawford. 1998b. Loss of plant diversity and extinction on Robinson Crusoe Islands, Chile. Pp. 243–257in C.-I Peng & P. P. Lowry II (eds.), Rare, threatened, and endangered floras of Asia and the Pacific Rim: Proceedings of the International Symposium on Rare, Threatened, and Endangered Floras of Asia and the Pacific Rim, April 30–May 4, Taipei, 1996. Monograph Series, 16. Institute of Botany, Academia Sinica. Taipei, Taiwan.

    Google Scholar 

  • Sun, B. Y., T. F. Stuessy, A. M. Humaña, M. Riveras G. &D. J. Crawford. 1996. Evolution ofRhaphilhamnus venustus (Verbenaceae), a gynodioecious hummingbird-pollinated endemic of the Juan Fernandez Islands, Chile. Pacific Sci. 50: 55–65.

    Google Scholar 

  • Thornton, I. 1971. Darwin’s islands: A natural history of the Galápagos. Natural History Press, New York.

    Google Scholar 

  • Vitousek, P. M., L. L. Loope &H. Adsersen (eds.). 1995. Islands: Biological diversity and ecosystem function. Ecological studies, 115. Springer-Verlag, Berlin.

    Google Scholar 

  • Wagner, W. L. &V. A. Funk (eds.). 1995. Hawaiian biogeography. Smithsonian Institute Press, Washington, DC.

    Google Scholar 

  • —,D. R. Herbst &S. H. Sohmer. 1990. Manual of the flowering plants of Hawaii. Univ. of Hawaii Press, Honolulu.

    Google Scholar 

  • Wallace, A. R. 1878. Tropical nature and other essays. Macmillan, London.

    Google Scholar 

  • — 1880. Island life, or the phenomena and causes of insular faunas and floras, including a revision and attempted solution of the problem of geological climates. Macmillan, London.

    Google Scholar 

  • —. 1895. Natural selection and tropical nature: Essays on descriptive and theoretical biology. Macmillan, London and New York.

    Google Scholar 

  • Webb, C. J. &D. Kelly. 1993. The reproductive biology of the New Zealand flora. Trends Ecol. Evol. 8: 442–147.

    Google Scholar 

  • Weiler, S. G. 1994. The relationship of rarity to plant reproductive biology. Pp. 90–117in M. L. Bowles & C. J. Whelan (eds.), Restoration of endangered species: Conceptual issues, planning, and implementation. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Wester, L. 1991. Invasions and extinctions on Masatierra (Juan Fernandez Islands): A review of early historical evidence. J. Hist. Geog. 17: 18–34.

    Google Scholar 

  • Whitehead, D. R. 1969. Wind pollination in the angiosperms: Evolutionary and environmental considerations. Evolution 23: 28–35.

    Google Scholar 

  • —. 1983. Wind pollination: Some ecological and evolutionary perspectives. Pp. 97–108in L. Real (ed.), Pollination biology. Academic Press, Orlando, FL.

    Google Scholar 

  • Whittaker, R. J. 1998. Island biogeography: Ecology, evolution, and conservation. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Williamson, M. 1981. Island populations. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Wilson, E. O. 1973. The ants of Easter Island and Juan Fernández. Pacific Insects 15: 285–287.

    Google Scholar 

  • Woodell, S. R. J. 1979. The rôle of unspecialized pollinators in the reproductive success of Aldabran plants. Philos. Trans., Ser. B 286: 99–108.

    Google Scholar 

  • Woodward, R. L. 1969. Robinson Crusoe Island: A history of the Juan Fernandez Islands. Univ. of North Carolina Press, Chapel Hill.

    Google Scholar 

  • Zink, R. A. &N. T. Wheelwright. 1997. Facultative self-pollination in island irises. Amer. Midl. Naturalist 137: 72–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardello, G., Anderson, G.J., Stuessy, T.F. et al. A survey of floral traits, breeding systems, floral visitors, and pollination systems of the angiosperms of the Juan Fernández Islands (Chile). Bot. Rev 67, 255–308 (2001). https://doi.org/10.1007/BF02858097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858097

Keywords

Navigation