Skip to main content
Log in

History of blood gas analysis. VI. Oximetry

  • Historical Review
  • Published:
Journal of Clinical Monitoring Aims and scope Submit manuscript

Abstract

Oximetry, the measurement of hemoglobin oxygen saturation in either blood or tissue, depends on the Lambert-Beer relationship between light transmission and optical density. Shortly after Bunsen and Kirchhoff invented the spectrometer in 1860, the oxygen transport function of hemoglobin was demonstrated by Stokes and Hoppe-Seyler, who showed color changes produced by aeration of hemoglobin solutions. In 1932 in Göttingen, Germany, Nicolai optically recorded the in vivo oxygen consumption of a hand after circulatory occlusion. Kramer showed that the Lambert-Beer law applied to hemoglobin solutions and approximately to whole blood, and measured saturation by the transmission of red light through unopened arteries. Matthes in Leipzig, Germany, built the first apparatus to measure ear oxygen saturation and introduced a second wavelength (green or infrared) insensitive to saturation to compensate for blood volume and tissue pigments. Millikan built a light-weight car “oximeter” during World War II to train pilots for military aviation. Wood added a pneumatic cuff to obtain a bloodless zero. Brinkman and Zijlstra in Groningen, The Netherlands, showed that red light reflected from the forehead could be used to measure oxygen saturation. Zijlstra initiated cuvette and catheter reflection oximetry. Instrumentation Laboratory used multiple wavelengths to measure blood carboxyhemoglobin and methemoglobin is cuvette oximeters. Shaw devised an eight-wavelength ear oximeter. Nakajima and coworkers invented the pulse oximeter, which avoids the need for calibration with only two wavelengths by responding only to the pulsatile changes in transmitted red and infrared light. Lübbers developed catheter tip and cuvette fiberoptic sensors for oxygen tension, carbon dioxide tension, and pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Comroe JH, Botelho SY. The unreliability of cyanosis in the recognition of arterial anoxemia. Am J Med Sci 1947;214:l-6

    Article  Google Scholar 

  2. Millikan GA. The oximeter: an instrument for measuring continuously oxygen saturation of arterial blood in man. Rev Sci Instrum 1942;13:434–444

    Article  CAS  Google Scholar 

  3. Hartman FW, McClure RD. Further studies with photoelectric oxyhemoglobinograph. Ann Surg 1940;112:791–794

    PubMed  CAS  Google Scholar 

  4. Hartman FW, Behrmann VG, Chapman FW. Photoelectric oxyhemograph: continuous method for measuring oxygen saturation of blood. Am J Clin Pathol 1948;18:1–13

    PubMed  CAS  Google Scholar 

  5. Newton I. Optiks; or a treatise of the reflections, refractions, inflections and colours of light. London: G. Bull, 1672 (reprinted 1931)

    Google Scholar 

  6. American Council of Learned Societies. W. H. Wollaston. In: Maurer JF, ed. Dictionary of scientific biography. Vol 14. New York: Scribner’s, 1976:486–494

    Google Scholar 

  7. American Council of Learned Societies. J. Frauenhofer. In: Maurer JF, ed. Dictionary of scientific biography. Vol. 5. New York: Scribner’s, 1972:142–144

    Google Scholar 

  8. Kirchhoff GR, Bunsen RWE. Chemische Analyse durch Spectralbeobachtungen. Engelmann: Leipzig, 1860

    Google Scholar 

  9. Laitinen HA, Ewing GW. A history of analytic chemistry. Washington, DC: American Chemical Society, 1977:110

    Google Scholar 

  10. American Council of Learned Societies. N. Bjerrum. In: Maurer JF, ed. Dictionary of scientific biography. Vol. 2. New York: Scribner’s, 1970:169–171

    Google Scholar 

  11. Astrup P, Severinghaus JW. The history of blood gases, acids and bases. Copenhagen: Munksgaard, 1986

    Google Scholar 

  12. American Council of Learned Societies. A.-E. Becquerel. In: Maurer JF, ed. Dictionary of scientific biography. Vol 1. New York: Scribner’s, 1970:555–556

    Google Scholar 

  13. Lambert JH. Photometria, sive de mensura et gradibus luminis, colorum et umbrae. Augsburg, 1760 [translation: Anding E. In: Ostwald W, ed. Klassiker der exakten Wissenschaften. Leipzig: W. Engelmann, 1892: 31–33 (Ger)]

  14. Beer A. Versuch der Absorptions-VerhÄltnisse des Cordierites für rothes Licht zu bestimmen. Ann Physik Chem 1851;84:37–52 (Ger)

    Article  Google Scholar 

  15. Stokes GG. On the reduction and oxygenation of the colouring matter of the blood. London, Edinburgh, Dublin philos Mag 1864;28:391

    Google Scholar 

  16. Hoppe-Seyler F. über die chemischen und optischen Eigenschafter des Blutfarbstoffs. Arch Pathol Anat Physiol 1864;29:233–251 (Ger)

    Article  Google Scholar 

  17. Vierordt K. Die quantitative Spektralanalyse in ihrer Anwendung auf Physiologie, Chemie und Technologie. Tubingen: H. Laupp’sche Buchhandlung, 1876 (Ger)

    Google Scholar 

  18. Hüfner G. über die Bedeutung der in der vorigen Abhandlung vorgettragenen Lehre für die Spectroskopie und Photometrie des Blutes. Arch Physiol (Leipzig) 1890;31:28–30 (Ger)

    Google Scholar 

  19. Hüfner G. über die QuantitÄt Sauerstoff welche 1 gramm HÄmoglobin zu binden vermag. Z Physiol Chem 1877;1-2:317–330 (Ger)

    Google Scholar 

  20. Hüfner G. über ein neues spektrophotometer. Z Physiol Chem 1889;3:562 (Ger)

    Google Scholar 

  21. Barcroft J. The respiratory function of the blood. London: Cambridge University, 1914

    Google Scholar 

  22. Krogh A, Leitch I. The respiratory function of the blood in fishes. J Physiol 1919;52:288–300

    PubMed  CAS  Google Scholar 

  23. Drabkin DL, Austin JH. Spectrophotometric studies. V. Technique for analysis of undiluted blood and concentrated hemoglobin solutions. J Biol Chem 1935;112:105–115

    CAS  Google Scholar 

  24. Drabkin DL, Schmidt CF. Observations of circulating blood in vivo, and the direct determination of the saturation of hemoglobin in arterial blood. J Biol Chem 1945;157:69–83

    CAS  Google Scholar 

  25. Hall FG. Spectroscopic method for determination of oxygen saturation in whole blood. J Biol Chem 1939;130:573–577

    CAS  Google Scholar 

  26. Evelyn KA, Malloy HT. Micro determination of oxyhemoglobin, methemoglobin and sulfehemoglobin in a single sample of blood. J Biol Chem 1938;126:655–662

    CAS  Google Scholar 

  27. Horecker BL. The absorption spectra of Hb and its derivatives in the visible and near infra red region. J Biol Chem 1943;148:173–183

    CAS  Google Scholar 

  28. Drabkin DL. Photometry and spectrophotometry. In: Glasser O, ed. Medical physics. Chicago: Year Book, 1944:967

    Google Scholar 

  29. Nicolai L. Uber Sichtbarmachung, Verlauf und chemische Kinetik der Oxyhemoglobinreduktion im lebenden Gewebe, besonders in der menschlichen Haut. Arch Ges Physiol 1932;229:372–389 (Ger)

    Article  CAS  Google Scholar 

  30. Kramer K. Bestimmung des Sauerstoffgehaltes und der HÄmoglobin Konzentration in HÄmoglobinlöslungen und hÄmolysierten Blut auf lichtelektrischen Wege. Z Biol 1934;95:126–134 (Ger)

    CAS  Google Scholar 

  31. Kramer K. Bestimmung des Sauerstoffgehaltes und der HÄmoglobinkonzentration in hÄmoglobinlösungen und hÄmolysiertem Blut auf lichtelektrischem Wege. Klin Wochenschr 1933;12:1875–1876 (Ger)

    Article  CAS  Google Scholar 

  32. Kramer K. Ein Verfahren zur fortlaufenden Messung des Saucrstoffgehaltes im stromenden Blute an uneröffneten Gefassen. Z Biol 1935;96:61–75 (Ger) [see also Kramer K, Sarre H. Z Biol 1935;36:76–110]

    CAS  Google Scholar 

  33. Kramer K, Elam JO, Saxton GA, Elam WN Jr. Influence of oxygen saturation, erythrocytc concentration and optical depth upon the red and near-infrared light transmittance of whole blood. Am J Physiol 1951;165:229–246

    PubMed  CAS  Google Scholar 

  34. Matthes K. über den Einfluss der Atmung auf die SauerstoffsÄttingungen des Arterienblutes. Arch Exp Pathol Pharmacol 1934;176:683–696 (Ger)

    Article  CAS  Google Scholar 

  35. Matthes K. Untersuchungen über die SauerstoffsÄttingungen des menschlichen Arterienblutes. Arch Exp Pathol Pharmacol 1935;179:698–711 (Ger)

    Article  CAS  Google Scholar 

  36. Karl Matthes: in memoriam. Mannheim, FRG: privately printed by C. F. Boehringer & Sohne, nd

  37. Matthes K, Gross F. Untersuchungen über die Absorption von rotem und ultraotem Licht durch kohlenoxydgesÄttigtes und reduziertes Blut. Arch Exp Pathol Pharmacol 1939;191:369–380 (Ger)

    Article  CAS  Google Scholar 

  38. Matthes K, Gross F. Fortlaufende Registrierung der Lichtabsorption des Blutes in zwei verschiedenen Spektralbezirken. Arch Exp Pathol Pharmacol 1939;191:381–390 (Ger)

    Article  CAS  Google Scholar 

  39. Matthes K, Gross F. Zur methode der fortlaufenden Registrierung der Farbe des menschlichen Blutes. Arch Exp Pathol Pharmacol 1939;191:523–5287 (Ger)

    Article  CAS  Google Scholar 

  40. Squire JR. Instrument for measuring quantity of blood and its degree of oxygenation in web of the hand. Clin Sci 1940;4:331–339

    Google Scholar 

  41. Goldie EAG. Device for continuous indication of oxygen saturation of circulating blood in man. J Sci Instrum 19:23, 1942

    Article  Google Scholar 

  42. Millikan GA. A simple photoelectric colorimeter. J Physiol 1933;79:152–157

    PubMed  CAS  Google Scholar 

  43. Roughton FJW, Millikan GA. Photoelectric methods of measuring velocity of rapid reactions. Proc R Soc Lond Series A 1936;155:258–361

    Article  CAS  Google Scholar 

  44. Millikan GA, Pappenheimer JR, Rawson AJ, Hervey JP. Continuous measurement of oxygen saturation in man. Am J Physiol 1941;133:390

    Google Scholar 

  45. Glen Allan Millikan, 1906–1947. Pasadena, Calif: Privately printed by Grant Dahlstrom, Castle Press, courtesy of Clare Millikan, 1947

  46. Hemingway AH, Taylor CB. Laboratory tests of oximeter with automatic compensation for vasomotor changes. J Lab Clin Med 1944;29:987–991

    CAS  Google Scholar 

  47. McClure RD, Behrmann VG, Hartman FW. The control of anoxemia during surgical anesthesia with the aid of an oxyhemograph. Ann Surg 1948;128:685–707

    CAS  Google Scholar 

  48. Faulconer A, Pender JW, Bickford, RG. The influence of partial pressure of nitrous oxide on the depth of anesthesia and the electroencephalogram in man. Anesthesiology 1949;10:601–609

    Article  PubMed  CAS  Google Scholar 

  49. Wood E, Geraci JE. Photoelectric determination of arterial oxygen saturation in man. J Lab Clin Med 1949;34:387–401

    PubMed  CAS  Google Scholar 

  50. Burchell HB. Symposium on in-vivo photometry of blood in human beings. Proc Mayo Clin 1950;25:377–412

    CAS  Google Scholar 

  51. Wood EH. Oximetry. In: Classer O, ed. Medical physics. Vol 2. Chicago: Year Book, 1950:664–680

    Google Scholar 

  52. Wood EH, Sutterer WF, Donald DE. The monitoring and recording of physiologic variables during closure of ventricular septal defects using extracorporeal circulation. Adv Cardiol 1959;2:61–74

    Google Scholar 

  53. Wood EH. Evolution of instrumentation and techniques for the study of cardiovascular dynamics from the thirties to 1980. Ann Biomed Eng 1978;6:250–309

    Article  PubMed  CAS  Google Scholar 

  54. Nahas GG. Spectrophotometric determination of hemoglobin and oxyhemoglobin in whole hemolyzed blood. Science 1951;113:723–725

    Article  PubMed  CAS  Google Scholar 

  55. Nahas GG. A simplified lucite cuvette for the spectrophotometric measurement of hemoglobin and oxyhemoglobin. J Appl Physiol 1958;13:147–152

    PubMed  CAS  Google Scholar 

  56. Bjure J, Nilsson NJ. Spectrophotometric determination ot oxygen saturation of hemoglobin in the presence of carboxyhemoglobin. Scand J Clin Lab Invest 1965;17:491–500

    Article  PubMed  CAS  Google Scholar 

  57. Siggaard-Andersen O, Jorgensen K, Naeraa N. Spectrophotometric determination of oxygen saturation in capillary blood. Scand J Clin Lab Invest 1962;14:298–302

    Article  Google Scholar 

  58. Hellung-Larsen P, Kjeldsen K, Mellemgaard K, Astrup P. Photometric determination of oxyhemoglobin saturation in the presence of carbon monoxide hemoglobin, especially at low oxygen tensions. Scand J Clin Lab Invest 1966;18:443–449

    Article  PubMed  CAS  Google Scholar 

  59. Rem J, Siggaard-Andersen O, NØrgaard-Pedersen B, SØrensen S. Hemoglobin pigments. II. Photometer for oxygen saturation, carboxyhemoglobin, and methemoglobin in capillary blood. Clin Chim Acta 1972;42:101–108

    Article  PubMed  CAS  Google Scholar 

  60. Siggaard-Andersen O. Experiences with a new direct reading oxygen saturation photometer using ultrasound for hemolyzing the blood. Scand J Clin Lab Invest 1977;37(Suppl 146):3–8

    Google Scholar 

  61. Siggaard-Andersen O, NØrgaard-Pedersen B, Rem J. Hemoglobin pigments. I. Spectrophotometric determination of oxy-, carboxy-, met-, and sulfhemoglobin in capillary blood. Clin Chim Acta 1972;42:85–100

    Article  PubMed  CAS  Google Scholar 

  62. Maas AHJ, Zuijdgeest PWA, Kreukniet J. Microspectrophotometric determination of the haemoglobin oxygen saturation in haemolyzed arterialized capillary blood. Clin Chim Acta 1964;9:236–240

    Article  PubMed  CAS  Google Scholar 

  63. Clerbaux T, Fesler R, Bourgeois J. A dynamic method for continuous recording of the whole blood oxyhemoglobin dissociation curve at constant temperature, pH and Pco2. J Med Lab Technol 1973;30:l-9

    Google Scholar 

  64. Colman CH, Longmuir IS. A new method for registration of oxyhemoglobin dissociation curves. J Appl Physiol 1963;18:420–423

    PubMed  CAS  Google Scholar 

  65. Dijkhuizen P, Buursma A, Fongers RME, et al. The oxygen binding capacity of human hemoglobin. Pflügers Arch 1977;369:223–231

    Article  PubMed  CAS  Google Scholar 

  66. Duc G, Engel K. A method for determination of oxyhemoglobin dissociation curves at constant temperature, pH, and Pco2. Respir Physiol 1969;8:118–126

    Article  PubMed  CAS  Google Scholar 

  67. Duvelleroy M, Buckles RG, Rosenhaimer S, et al. An oxyhcmoglobin dissociation analyzer. J Appl Physiol 1970;28:227–233

    PubMed  CAS  Google Scholar 

  68. Haab PE, Piiper J, Rahn H. Simple method of rapid determination of an O2 dissociation curve of the blood. J Appl Physiol 1960;15:1148–1149

    PubMed  CAS  Google Scholar 

  69. Imai K, Morimoto H, Kotani M, et al. Studies on the function of abnormal hemoglobins. I. An improved method for automatic measurement of the oxygen equilibrium curve of hemoglobin. Biochim Biophys Acta 1970;200:189–196

    PubMed  CAS  Google Scholar 

  70. Lambertsen CJ, Bunce PL, Drabkin DL, Schmidt CF. Relationship of oxygen tension to hemoglobin oxygen saturation in arterial blood of normal men. J Appl Physiol 1952;4:873–885

    PubMed  CAS  Google Scholar 

  71. Longmuir IS, Chow J. Rapid method for determining effect of agents on oxyhcmoglobin dissociation curves. J Appl Physiol 1970;28:343–345

    PubMed  CAS  Google Scholar 

  72. Neisel W, Thews G. Ein neues Verfahren zur schnellen und genauen Aufnahme der Sauerstoffbindungskurve des Blutes und konzentrierter HÄmoproteinlösungen. Arch Ges Physiol 1961;273:380–395 (Ger)

    Article  Google Scholar 

  73. Reeves RB. A rapid micro method for obtaining oxygen equilibrium curves on whole blood. Respir Physiol 1980;42:299–315

    Article  PubMed  CAS  Google Scholar 

  74. Rossi-Bernardi L, Luzzana M, Samaja M, et al. Continuous determination of the oxygen dissociation curve for whole blood. Clin Chem 1975;21:1747–1753

    PubMed  CAS  Google Scholar 

  75. Teisseire B, Teisseirc L, Lautier A, et al. A method of continuous recording on microsamples of the Hb-O2 association curve. I. Technique and direct registration of standard results. Bull Physiol Pathol Respir 1973;11:837–851

    Google Scholar 

  76. Zwart A, Kwant G, Oeseburg B, Zijlstra WG. Oxygen dissociation curves for whole blood, recorded with an instrument that continuously measures PO2 and SO2 independently at constant T, Pco2, and pH. Clin Chem 1982;28:1287–1292

    PubMed  CAS  Google Scholar 

  77. Brinkman R, Zijlstra WG. Determination and continuous registration of the percentage oxygen saturation in small amounts of blood. Arch Chir Neerl 1949;1:177–183

    PubMed  CAS  Google Scholar 

  78. Brinkman R, Wildschut AJH. Clinical method for rapid and accurate determination of oxygen saturation in small amounts of blood. Acta Med Scand 1938;94:459–466

    Article  CAS  Google Scholar 

  79. Jonxis JHP. Determination of oxygen saturation in small amounts of blood, by means of Pulfrich step photometer. Acta Med Scand 1938;94:467–471

    Article  CAS  Google Scholar 

  80. Zijlstra WG. Fundamentals and applications of clinical oximetry. 2nd ed. Assen, The Netherlands: Van Gorcum, 1953;1–134

    Google Scholar 

  81. Polanyi ML, Hehir RM. New reflection oximeter. Rev Sci Instrum 1960;31:401–403

    Article  CAS  Google Scholar 

  82. Enson Y, Briscoe WA, Polanyi ML, Cournand A. In vivo studies with an intravascular and intracardiac reflection oximeter. J Appl Physiol 1962;17:552–558

    PubMed  CAS  Google Scholar 

  83. Enson Y, Jameson AG, Cournand A. Intracardiac oximetry in congenital heart disease. Circulation 1964;29:499–507

    PubMed  Google Scholar 

  84. Zijlstra WG. A manual of reflection oximetry. Assen, The Netherlands: Van Gorcum, 1958

    Google Scholar 

  85. Zijlstra WG, Mook GA. Medical Reflection Photometry. Assen, The Netherlands: Van Gorcum, 1962:1–271

    Google Scholar 

  86. Brinkman R, Zijlstra WG, Koopmans RK. A method for continuous observation of percentage oxygen saturation in patients. Arch Chir Neerl 1950;1:333–344

    Google Scholar 

  87. Kramer K, ed. Oxymetrie. Theorie und klinische Anwendung. 1. Bremen Kolloquium. 26 Jan 1959. Stuttgart: Georg Thieme, 1960 (Ger)

    Google Scholar 

  88. Ware PF, Polanyi ML, Hehir RM, et al. A new reflection oximeter. J Thorac Cardiovasc Surg 1961;42:580–588

    PubMed  CAS  Google Scholar 

  89. Kapani NS. Optical properties of certain dielectric cylinders. J Opt Soc Am 1957;47:413–422.

    Article  Google Scholar 

  90. Taylor JB, Lown B, Polanyi M. In-vivo monitoring with a fiberoptic catheter. JAMA 1972;221:667–673

    Article  PubMed  CAS  Google Scholar 

  91. Johnson CC, Palm RD, Stewart DC, Martin WE. A solid state fiberoptics oximeter. J Assoc Adv Med Instrum 1971;5:77–83

    PubMed  CAS  Google Scholar 

  92. Landsman MLJ, Knop N, Kwant G, et al. A fiberoptic reflection oximeter. Pflügers Arch 1978;373:273–282

    Article  PubMed  CAS  Google Scholar 

  93. Cole J, Martin WE, Cheung PW, Johnson CC. Clinical studies with a solid state fiberoptic oximeter. Am J Cardiol 1972;29:383–388

    Article  PubMed  CAS  Google Scholar 

  94. Divertie MB, McMichan JC. Continuous monitoring of mixed venous oxygen saturation. Chest 1984;85:423–428

    Article  PubMed  CAS  Google Scholar 

  95. Martin WE, Cheung PW, Johnson CC, Wong KC. Continuous monitoring of mixed venous oxygen saturation in man. Anesth Analg Curr Res 1973;52:784–793

    CAS  Google Scholar 

  96. Wilkinson AR, Phibbs RH, Gregory GA. Continuous measurement of oxygen saturation in sick newborn infants. J Pediatr 1978;93:1016–1019

    Article  PubMed  CAS  Google Scholar 

  97. Nakajima S, Hirai Y, Takase H, et al. Performances of new pulse wave earpiece oximctcr. Respir Circ 1975;23:41–45 Original: [New pulsed type earpiece oximeter]. Kokyu To Junkan 1975;23:709–713 (Jap)

    Google Scholar 

  98. Asari M, Kemmotsu O. [Application of the pulse wave ear oximeter in anesthesiology]. Jpn J Anesthesiol 1976;26:205–207 (Jap)

    Google Scholar 

  99. Suzukawa M, Fujisawa M, Matsushita F, et al. [Clinical use of pulse-type finger oximeter in anesthesia]. Jpn J Anesthesiol 1978;27:600–605 (Jap)

    CAS  Google Scholar 

  100. Yoshiya I, Shimada Y, Tanaka K. Spectrophotometric monitoring of arterial oxygen saturation in the fingertip. Med Biol Eng Comput 1980;18:27–32

    Article  PubMed  CAS  Google Scholar 

  101. Sarnquist F, Todd C, Whitcher C. Accuracy of a new non-invasive oxygen saturation monitor. Anesthesiology 1980;53, S163

    Article  Google Scholar 

  102. Shimada Y, Yoshiya I, Oka N, Hamaguri K. Effects of multiple scattering and peripheral circulation on arterial oxygen saturation measured with a pulse-type oximeter. Med Biol Eng Comput 1984;22:475–478

    Article  PubMed  CAS  Google Scholar 

  103. Mendelsohn Y, Cheung PW, Neuman MR, et al. Spectrophotometric investigation of pulsatile blood flow for transcutaneous reflectance oximetry. Adv Exp Med Biol 1981;159:93–102

    Google Scholar 

  104. Chapman KR, Liu FLW, Watson RM, Rebuck AS. Range of accuracy of two wavelength oximetry. Chest 1986;89:540–542

    Article  PubMed  CAS  Google Scholar 

  105. Brodsky JB, Shulman MS, Swan M, Mark JB. Pulse oximetry during one-lung ventilation. Anesthesiology 1985;63:212–214

    Article  PubMed  CAS  Google Scholar 

  106. Brooks TD, Paulus DA, Winkle WE. Infrared heat lamps interfere with pulse oximeters. Anesthesiology 1984;61:630. Letter

    Article  PubMed  CAS  Google Scholar 

  107. Fanconi S, Dohcrty P, Edmonds JF, et al. Pulse oximetry in pediatric intensive care: comparison with measured saturations and transcutaneous oxygen tension. J Pediatr 1985;107:362–366

    Article  PubMed  CAS  Google Scholar 

  108. Friesen RH. Pulse oximetry during pulmonary artery surgery. Anesth Analg 1985;64:376

    Article  PubMed  CAS  Google Scholar 

  109. Krenkel R, Liappis N, Redel D, Hildenbrand G. Nichtinvasive Messung der Sauerstoffsattigung mit dem Oxygenmet-Oximeter. Vergleich mit der invasiven reflektometrischen Methode Klin Padiatr 1981;193:315–317 (Ger)

    CAS  Google Scholar 

  110. Liappis N. Nichtinvasive Messung der Sauerstoffsattigung mit dem Oxygenmet-Oximeter an Fingern, Mittelhand und Handgelenk von Sauglingen. Vergleich mit der berechneten Sauerstoffsattigung aus pH and PO2 der Blutgasanalyse. Klin Padiatr 1979;191:467–471 (Ger)

    PubMed  CAS  Google Scholar 

  111. Mihm FG, Halperin BD. Noninvasive detection of profound arterial desaturations using a pulse oximetry device. Anesthesiology 1985;62:85–87

    Article  PubMed  CAS  Google Scholar 

  112. Shippy MB, Petterson MT, Whitman RA, Shivers CR. A clinical evaluation of the BTI Biox II car oximeter. Respir Care 1984;29:730–735

    Google Scholar 

  113. Spiss CK, Mauritz W, Zadrobilek E, Draxler V. Nichtinvasive Pulsoximetrie zur Bestimmung der Sauerstoffsattigung bei Intensivpatienten. Anaesthesist 1985;34:405–408 (Ger)

    PubMed  CAS  Google Scholar 

  114. Tyler IL, Tantisira B, Winter PM, Motoyama EK. Continuous monitoring of arterial oxygen saturation with pulse oximetry during transfer to the recovery room. Anesth Analg 1985;64:1108–1112

    Article  PubMed  CAS  Google Scholar 

  115. Yelderman M, New W Jr. Evaluation of pulse oximetry. Anesthesiology 1983;59:349–352

    Article  PubMed  CAS  Google Scholar 

  116. Kautsky H, Hirsch A. Nachweis geringster Sauerstoffmengen durch Phosphorescenztilgung. Z Anorg Allg Chem 1935;222:126–134 (Ger)

    Article  CAS  Google Scholar 

  117. Knopp JA, Longmuir IS. Intracellular measurement of oxygen by quenching of fluorescence of pyrenebutyric acid. Biochim Biophys Acta 1972;279:393

    PubMed  CAS  Google Scholar 

  118. Lübbers D, Opitz N. The “PO2-optode,” a new tool to measure PO2 of biological gases and fluids by quantitative fluorescence photometry. Pflügers Arch 1975;359:R145

    Google Scholar 

  119. Lübbers D, Opitz N. Quantitative fluorescence photometry with biological fluids and gases. In: Thews G, Grote J, Reneau DD, eds. Oxygen transport to tissue. Advances in experimental medicine and biology. Vol 75, New York: Plenum, 1976:65–68

    Google Scholar 

  120. Lübbers DW, Opitz N. Die Pco2/Po2-Optode: Eine neue Pco2-bzw. Po2 Messonde zur Messung des Pco2 oder Po2 von Gasen und Flüssigkeiten. Z Naturforsch 1975;30c:532–533 (Ger)

    Google Scholar 

  121. Lübbers DW. Measuring methods for the analysis of tissue oxygen supply. In: Jöbsis FF. Oxygen and physiological function. Dallas: Professional Information Library, 1977:62–71

    Google Scholar 

  122. Lübbers DW, Opitz N. Optical fluorescence sensors for continuous measurement of chemical concentrations in biological systems. Sensors and Actuators 1983;4:641–654

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Severinghaus, J.W., Astrup, P.B. History of blood gas analysis. VI. Oximetry. J Clin Monitor Comput 2, 270–288 (1986). https://doi.org/10.1007/BF02851177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02851177

Key Words

Navigation