Skip to main content
Log in

Schur covers and Carlitz’s conjecture

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We use the classification of finite simple groups and covering theory in positive characteristic to solve Carlitz’s conjecture (1966). An exceptional polynomialf over a finite field\({\mathbb{F}}_q \) is a polynomial that is a permutation polynomial on infinitely many finite extensions of\({\mathbb{F}}_q \). Carlitz’s conjecture saysf must be of odd degree (ifq is odd). Indeed, excluding characteristic 2 and 3, arithmetic monodromy groups of exceptional polynomials must be affine groups.

We don’t, however, know which affine groups appear as the geometric metric monodromy group of exceptional polynomials. Thus, there remain unsolved problems. Riemann’s existence theorem in positive characteristic will surely play a role in their solution. We have, however, completely classified the exceptional polynomials of degree equal to the characteristic. This solves a problem from Dickson’s thesis (1896). Further, we generalize Dickson’s problem to include a description of all known exceptional polynomials.

Finally: The methods allow us to consider coversX\({\mathbb{P}}^1 \) that generalize the notion of exceptional polynomials. These covers have this property: Over each\({\mathbb{F}}_{q^t } \) point of\({\mathbb{P}}^1 \) there is exactly one\({\mathbb{F}}_{q^t } \) point ofX for infinitely manyt. ThusX has a rare diophantine property whenX has genus greater than 0. It has exactlyq t+1 points in\({\mathbb{F}}_{q^t } \) for infinitely manyt. This gives exceptional covers a special place in the theory of counting rational points on curves over finite fields explicitly. Corollary 14.2 holds also for a primitive exceptional cover having (at least) one totally ramified place over a rational point of the base. Its arithmetic monodromy group is an affine group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abhyankar,Coverings of Algebraic Curves, Am. J. Math79 (1957), 825–856.

    Article  MATH  MathSciNet  Google Scholar 

  2. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson,Atlas of finite groups: maximal subgroups and ordinary characters for simple groups, Clarendon Press, New York, 1985.

    MATH  Google Scholar 

  3. M. Aschbacher,On the maximal subgroups of the finite classical groups, Invent. Math.76 (1984), 469–514.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Aschbacher and L. Scott,Maximal subgroups of finite groups, J. Algebra92 (1985), 44–80.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Borel and J. Tits,Elements unipotents et sous-groupes paraboliques de groupes reductif I, Invent. Math.12 (1971), 95–104.

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Burnside,On simply transitive groups of prime degree, Quart. J. Math.37 (1906), 215–236.

    Google Scholar 

  7. P. Cameron,Finite permutation groups and finite simple groups, BLMS13 (1981), 1–22.

    Article  MATH  Google Scholar 

  8. R. Carter,Simple Groups of Lie Type, John Wiley & Sons, New York, 1989.

    MATH  Google Scholar 

  9. S. Cohen,Permutation Polynomials and Primitive Permutation Groups, Arch. Math.57 (1991), 417–423.

    Article  MATH  Google Scholar 

  10. S. Cohen,Exceptional polynomials and the reducibility of substitution polynomials,, L’Enseigment Math.36 (1990), 309–318.

    Google Scholar 

  11. J. W. S. Cassels and J. Fröhlich,Algebraic Number Theory, Acad. Press, London and New York, 1967.

    MATH  Google Scholar 

  12. H. Davenport and D. J. Lewis,Notes on Congruences (I), Quart. J. Math14 (1963), 51–60.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. E. Dickson,The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. of Math.11 (1897), 65–120, 161–183.

    Article  MathSciNet  Google Scholar 

  14. M. Fried,Exposition on an Arithmetic-Group Theoretic Connection via Riemann’s Existence Theorem, Proceedings of Symposia in Pure Math: Santa Cruz Conference on Finite Groups, A.M.S. Publications37 (1980), 571–601.

    MathSciNet  Google Scholar 

  15. M. Fried,Arithmetical properties of function fields (II); the generalized Schur problem, Acta Arith.XXV (1974), 225–258.

    MathSciNet  Google Scholar 

  16. M. Fried,On a conjecture of Schur, Mich. Math. Journal17 (1970), 41–55.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Fried,On a theorem of MacCluer, Acta Arith.XXV (1974), 122–127.

    Google Scholar 

  18. M. Fried,Galois groups and complex multiplication, Trans.A.M.S.235 (1978), 141–162.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Fried,The Nonregular Analogue of Tchebotarev’s Theorem, Pac. Journ.113 (1984), 1–9.

    MathSciNet  Google Scholar 

  20. M. Fried and M. Jarden,Field Arithmetic, Springer Ergebnisse series, Vol 11, 1986.

  21. A. Grothendieck,Géométrie formelle et géométrie algébrique, Seminaire Bourbaki t. 11182 (1958/59).

  22. R. Guralnick,Subgroups of prime power index in a simple group, J. Algebra81 (1983), 304–311.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Hayes,A geometric approach to permutation polynomials over a finite field, Duke Math. J.34 (1967), 293–305.

    Article  MATH  MathSciNet  Google Scholar 

  24. D. Harbater,Formal Patching and Adding Branch Points, preprint June 1991.

  25. C. Hering, M. W. Liebeck and J. Saxl,The factorizations of the finite exceptional groups of Lie Type, J. Alg.106 (1987), 517–527.

    Article  MATH  MathSciNet  Google Scholar 

  26. B. Huppert,Endliche Gruppen I, Springer, New York-Heidelberg-Berlin, 1967.

    MATH  Google Scholar 

  27. P. Kleidman and M. W. Liebeck,The subgroup structure of the finite classical groups, LMS Lecture Notes #129, Cambridge University Press, Cambridge, (1990).

    MATH  Google Scholar 

  28. R. Lidl and G. Mullen,When does a polynomial over a finite field permute the elements of a field, II, Amer. Math Monthly100 #1 (1993), 71–74.

  29. R. Lidl and H. Niederreiter,Finite Fields, Encyclo. Math. and Appls., Addison-Wesley, Reading MA.20 (1983), now distributed by Cambridge University Press.

  30. M. W. Liebeck,On the orders of the maximal subgroups of the finite classical groups, Proc. London Math. Soc.50 (1985), 426–446.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Liebeck, C. Praeger, J. Saxl,The maximal factorizations of the finite simple groups and their automorphism groups, Mem. AMS86 #432 (1990).

    Google Scholar 

  32. M. Liebeck, C. Praeger and J. Saxl,On the 2-closures of finite permutation groups, J. London Math. Soc.37 (1988), 241–252.

    Article  MATH  MathSciNet  Google Scholar 

  33. M. Liebeck, C. Praeger, J. Saxl,On the O’Nan-Scott reduction theorem for finite primitive permutation groups, J. Australian Math. Soc. A44 (1988), 389–396 (MR: 89a:20002).

    Article  MATH  MathSciNet  Google Scholar 

  34. M.W. Liebeck and J. Saxl,The primitive permutation groups of odd degree, J. London Math. Soc.31 (1985), 250–264.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Mueller,A degree 21 counterexample to the Indecomposability Statement, e-mail February 8, 1993.

  36. G.L. Mullen,Permutation polynomials over finite fields, Proc. Inter. Conf. Finite Fields, Coding Theory and Appls. in Comm. and Comp., Las Vegas, NV, Aug. 1991, Lecture Notes in Pure and Appl. Math., Marcel Dekker (1992), pp. 131–151.

  37. M. Raynaud,Revêtements de la droite affine en caractéristique p>0et conjecture d’Abhyankar, preprint, to appear in Inventiones.

  38. A. Schinzel,Selected Topics on Polynomials, Ann Arbor, The University of Michigan Press, 1982.

    MATH  Google Scholar 

  39. I. Schur,Über den Zussamenhang zwischen einem Problem der Zahlentheorie und linier satz über algebraische Functionen, S.-B. Preuss. Akad. Wiss. Phys.-Math. K. (1923), pp. 123–134.

  40. I. Schur,Zur Theorie der einfach transitiven Permutations Gruppen, S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl. (1933), pp. 598–623.

  41. G. Seitz,Unipotent subgroups of groups of Lie type, J. Algebra84 (1983), 253–278.

    Article  MATH  MathSciNet  Google Scholar 

  42. J.-P. Serre,Construction de revêtement étales de la droite affine de caractéristic p, Comptes Rendus311 (1990), 341–346.

    MATH  MathSciNet  Google Scholar 

  43. J.-P. Serre,Revêtements de courbes algébriques, Sém. Bour., 44ème année n°749 (1991/92).

  44. J.-P. Serre,Topics in Galois Theory, Research Notes in Mathematics, Jones and Bartlett, 1992.

  45. D. Wan,Permutation polynomials and resolution of singularities over finite fields, Proc. Amer. Math. Soc.110 (1990), 303–309.

    Article  MATH  MathSciNet  Google Scholar 

  46. H. Wielandt,Primitive Permutationsgruppen von Grad 2p, Math. Z.63 (1956), 478–485.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Fried.

Additional information

To the contributions of John Thompson to the classification of finite simple groups

In Memorium: To the memory of Daniel Gorenstein and the success of his project to complete the classification.

Supported by NSA grant MDA 14776 and BSF grant 87-00038.

First author supported by the Institute for Advanced Studies in Jerusalem and IFR Grant #90/91-15.

Supported by NSF grant DMS 91011407.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fried, M.D., Guralnick, R. & Saxl, J. Schur covers and Carlitz’s conjecture. Israel J. Math. 82, 157–225 (1993). https://doi.org/10.1007/BF02808112

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02808112

Keywords

Navigation