Skip to main content
Log in

The Ca2+/calmodulin-dependent protein kinase II-associated protein complex isolated from chicken retina

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Retinal cytosolic Ca2+/calmodulin-dependent protein kinase II (CaM KII) was isolated from hatched 6-wk chicken retinae by ultracentrifugation and affinity chromatography using calmodulin (CaM) and anti-CaM KII-α columns. Samples from different fractions were examined with SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and silver staining or immunoblotting. Comparisons were made between the final antibody affinity eluates from retina and forebrain. Silver-stained gels showed that multiple proteins were present in the antibody affinity eluates from retina, including major proteins of 178, 56, and 45 kDa and several minor proteins. Immunoblots revealed that CaM KII-α was present in eluates from the retina and forebrain. CaM KII-β was present in the antibody eluate from forebrain but not retina. The latter subunit was present in the crude homogenates of the retina. Regarding the antibody eluate from retina, the possibility that the major 56 kDa protein was tubulin was ruled out, but protein tau (τ) and synapsin I were present. The presence of multiple proteins in the antibody affinity eluate indicates that these proteins were coisolated in a CaM KII-α-associated protein complex. The finding that protein τ and synapsin I are associated with retinal CaM KII provides further insight into the mechanisms underlying the function of the kinase in this tissue. The lack of cytosolic CaM KII-β subunit in the antibody affinity eluate from retina is indicative of a brain region-specificity in subunit composition of the kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baudier J. and Cole R. D. (1987) Phosphorylation of tau proteins to a state like that in Alzheimer’s brain is catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids.J. Biol. Chem. 262, 17,577–17,583.

    CAS  Google Scholar 

  • Benfenati F., Valtorta F., Rubenstein J. L., Gorelick F. S., Greengard P., and Czernik A. J. (1992) Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I.Nature 359, 417–420.

    Article  PubMed  CAS  Google Scholar 

  • Bennett M. K., Erondu N. E., and Kennedy M. B. (1983) Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain.J. Biol. Chem. 258, 12,735–12,744.

    CAS  Google Scholar 

  • Bronstein J. M., Wasterlain C. G., and Farber D. B. (1988a) A retinal calmodulin-dependent kinase: calcium/calmodulin-stimulated and -inhibited states.J. Neurochem. 50, 1438–1446.

    Article  PubMed  CAS  Google Scholar 

  • Bronstein J. M., Wasterlain C. G., Bok D., Lasher R., and Farber D. B. (1988b) Localization of retinal calmodulin kinase.Exp. Eye Res. 47, 391–402.

    Article  PubMed  CAS  Google Scholar 

  • Cooper N. G. F., Wei X., and Liu N. (1995) Onset of expression of the alpha subunit of Ca2+/calmodulin-dependent protein kinase II and a novel related protein in the developing retina.J. Mol. Neurosci. 6, 75–89.

    PubMed  CAS  Google Scholar 

  • DeLorenzo R. J., Freedman S. D., Yohe W. B., and Maurer S. C. (1979) Stimulation of Ca2+-dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles.Proc. Natl. Acad. Sci. USA 76, 1838–1842.

    Article  PubMed  CAS  Google Scholar 

  • Erondu N. E. and Kennedy M. B. (1985) Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain.J. Neurosci. 5, 3270–3277.

    PubMed  CAS  Google Scholar 

  • Goldenring J. R., Gonzalez B., McGuire J. S. Jr., and DeLorenzo R. J. (1983) Purification and characterization of a calmodulin-dependent kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated proteins.J. Biol. Chem. 258, 12,632–12,640.

    CAS  Google Scholar 

  • Goldenring J. R., McGuire J. S., and DeLorenzo R. J. (1984a) Identification of the major postsynaptic density protein as homologous with the major calmodulin-binding subunit of a calmodulin-dependent protein kinase.J. Neurochem. 42, 1077–1084.

    Article  PubMed  CAS  Google Scholar 

  • Goldenring J. R., Casanova J. E., and DeLorenzo R. J. (1984b) Tubulin-associated calmodulin-dependent kinase: evidence for an endogenous complex of tubulin with a calmodulin-dependent kinase.J. Neurochem. 43, 1669–1679.

    Article  PubMed  CAS  Google Scholar 

  • Harlow E. and Lane D. (1988)Antibodies. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Kanaseki T., Ikeuchi Y., Sugiura H., and Yamauchi T. (1991) Structural features of Ca2+/calmodulin-dependent protein kinase II revealed by electron microscopy.J. Cell Biol. 115, 1049–1060.

    Article  PubMed  CAS  Google Scholar 

  • Kelly P. T., McGuinness T. L., and Greengard P. (1984) Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase.Proc. Natl. Acad. Sci. USA 81, 945–949.

    Article  PubMed  CAS  Google Scholar 

  • Kelly P. T. and Vernon P. (1985) Changes in the subcellular distribution of calmodulin-kinase II during brain development.Dev. Brain Res. 18, 211–224.

    Article  CAS  Google Scholar 

  • Kennedy M. B., Bennett M. K., and Erondu N. E. (1983) Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase.Proc. Natl. Acad. Sci. USA 80, 7357–7361.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Larson R. E., Goldenring J. R., Vallano M. L., and DeLorenzo R. J. (1985) Identification of endogenous calmodulin-dependent kinase and calmodulin-binding proteins in cold-stable microtubule preparations from rat brain.J. Neurochem. 44, 1566–1574.

    Article  PubMed  CAS  Google Scholar 

  • Liu N. and Cooper N. G. F. (1994) Purification and characterization of the Ca2+/calmodulin-dependent protein kinase II from chicken forebrain.J. Mol. Neurosci. 5, 193–206.

    PubMed  CAS  Google Scholar 

  • Liu N. and Cooper N. G. F. (1995) Purification and characterization of the Ca2+/calmodulin-dependent protein kinase II from chicken retina.Soc. Neurosci. Abstr. 21, 391.

    Google Scholar 

  • Llinas R., McGuinness T. L., Leonard C. S., Sugumori M., and Greengard P. (1985) Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant axon.Proc. Natl. Acad. Sci. USA 82, 3035–3039.

    Article  PubMed  CAS  Google Scholar 

  • Mandell J. W., Townes-Anderson E., Czernik A. J., Cameron R., Greengard P., and De Camilli P. (1990) Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses.Neuron 5, 19–33.

    Article  PubMed  CAS  Google Scholar 

  • Marcum J. M., Dedman J. R., Brinkley B. R., and Means A. R. (1978) Control of microtubule assembly-disassembly by calcium-dependent regulator protein.Cell Biol. 75, 3771–3775.

    CAS  Google Scholar 

  • McCaffery C. J. and DeGennaro L. J. (1986) Determination and analysis of the primary structure of the nerve terminal specific phosphoprotein, synapsin I.EMBO J. 5, 3167–3173.

    PubMed  CAS  Google Scholar 

  • McGuinness T. L., Lai Y., and Greengard P. (1985) Ca2+/calmodulin-dependent protein kinase II. Isozymic forms from rat forebrain and cerebellum.J. Biol. Chem. 260, 1696–1704.

    PubMed  CAS  Google Scholar 

  • McKee A. C., Kosik K. S., Kennedy M. B., and Kowall N. W. (1990) Hippocampal neurons predisposed to neurofibrillary tangle formation are enriched in type II calcium/calmodulin-dependent protein kinase.J. Neuropathol. Exp. Neurol. 49, 49–63.

    Article  PubMed  CAS  Google Scholar 

  • Miller S. G. and Kennedy M. B. (1985) Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction.J. Biol. Chem. 260, 9039–9046.

    PubMed  CAS  Google Scholar 

  • Nichols R. A., Sihra T. S., Czernik A. J., Nairn A. C., and Greengard P. (1990) Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes.Nature 343, 647–651.

    Article  PubMed  CAS  Google Scholar 

  • Ochiishi T., Terashima T., Sugiura H., and Yamauchi T. (1994) Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase II in the rat retina.Brain Res. 634, 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Schulman H. (1984) Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin-dependent protein kinase.J. Cell. Biol. 99, 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Schulman H. (1988) The multifunctional Ca2+/calmodulin-dependent protein kinase, inAdvances in Second Messenger and Phosphoprotein Research, vol. 22 (Greengard P. and Robinson R., eds.), Raven, New York, pp. 39–112.

    Google Scholar 

  • Towbin H., Staehelin T., and Gordon J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  • Tucker R. P. and Matus A. I. (1988) Microtubule-associated proteins characteristic of embryonic brain are found in the adult mammalian retina.Dev. Biol. 130, 423–434.

    Article  PubMed  CAS  Google Scholar 

  • Wu G. Y. and Cline H. (1995) Dynamic growth patterns ofXenopus tectal cells and effects of overexpression of CaM KII.Soc. Neurosci. Abstr. 21, 1290.

    Google Scholar 

  • Yamamoto H., Fukunaga K., Tanaka E., and Miyamoto E. (1983) Ca2+- and calmodulin-dependent phosphorylation of microtubule-associated protein 2 and τ factor, and inhibition of microtubule assembly.J. Neurochem. 41, 1119–1125.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi T., Nakata H., and Fujisawa H. (1981) A new activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase. Purification and characterization.J. Biol. Chem. 256, 5404–5409.

    PubMed  CAS  Google Scholar 

  • Yamauchi T. and Fujisawa H. (1982) Phosphorylation of microtubule-associated protein 2 by calmodulin-dependent protein kinase (kinase II) which occurs only in the brain tissues.Biochem. Biophys. Res. Commun. 109, 975–981.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi T., Ohsako S., and Deguchi T. (1989) Expression and characterization of calcium-dependent protein kinase II from cloned cDNA in Chinese hamster ovary cells.J. Biol. Chem. 264, 19,108–19,116.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Cooper, N.G.F. The Ca2+/calmodulin-dependent protein kinase II-associated protein complex isolated from chicken retina. J Mol Neurosci 7, 1–12 (1996). https://doi.org/10.1007/BF02736844

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736844

Index Entries

Navigation