Skip to main content
Log in

Interaction between an 8-methoxypyrimido[4′,5′:4,5] thieno (2,3-b)quinoline-4(3H)one antitumour drug and deoxyribonucleic acid

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The interaction of 8-methoxypyrimido[4′,5′:4,5]thieno(2,3-b)quinoline-4(3H)one (MPTQ) with DNA was studied by UV-Vis and fluorescence spectrophotometry as well as by hydrodynamic methods. On binding to DNA, the absorption spectrum underwent bathochromic and hypochromic shifts and the fluorescence was quenched. Binding parameters, determined from spectrophotometric measurements by Scatchard analysis, indicated a binding constant of 3.56 × 106 M−1 for calf thymus DNA at ionic strength 0.01 M. Binding to the GC-rich DNA ofMicrococcus lysodeikticus was stronger than the binding to calf thymus DNA at ionic strength 0.01 M. The MPTQ increased the viscosity of sonicated rod-like DNA fragments, producing a calculated length of 2.4Å/bound MPTQ molecule. The binding of MPTQ to DNA increased the melting temperature by about 4 °C. This research offers a new intercalation functional group to DNA targetted drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dalton L K, Demerac S C, Elmes B C, Loder J W, Swan J M and Teitei T 1967Aust. J. Chem. 20 2715

    Article  CAS  Google Scholar 

  2. Svoboda G H, Poore G A and Montfort M Z 1968J. Pharmacol. Sci. 57 1720

    Article  CAS  Google Scholar 

  3. Hartwell J L and Abbot B J 1969 Antineoplastic principles in plants: recent developments in the field. InAdvances in pharmacology and chemotherapy 7th edn (eds) S Garrattini, A Goldin, F Hawking and I J Kopin (New York: Academic Press) p. 117

    Google Scholar 

  4. Gatto B, Capranico G and Palumbo M 1999Curr. Pharmacol. Design 5 195

    CAS  Google Scholar 

  5. Sainsburry M 1977Synthesis 7 437

    Article  Google Scholar 

  6. Allard B, Jouini M, Bistocchi G A, Orvietani P L, Ricci A, Lescot E and Schwaller A 1995J. Chem. Res. 1314

  7. Baez A, Gonzalez F A, Vazquez D and Waring M 1983Biochem. Pharmacol. 32 2089

    Article  CAS  Google Scholar 

  8. Cao Y and He W X 1998Spectrochim. Acta A54 883

    Google Scholar 

  9. Singh M P, Joseph T, Kumar S and Lown J W 1992Chem. Res. Toxicol. 5 597

    Article  CAS  Google Scholar 

  10. Tilak Raj T and Ambekar S Y 1988J. Chem. Res. 50 537

    Google Scholar 

  11. Barton J K, Goldberg J M and Kumar C V 1986J. Am. Chem. Soc. 108 2081

    Article  CAS  Google Scholar 

  12. Scatchard G 1949Ann. NYAcad. Sci. 51 660

    Article  CAS  Google Scholar 

  13. Peacocke A R and Skerrett J N H 1956Trans. Faraday Soc. 52 261

    Article  CAS  Google Scholar 

  14. McGhee J D and von Hippel D H 1974J. Mol. Biol. 86 496

    Article  Google Scholar 

  15. Blake A and Peacocke A R 1968Biopolymers 6 1225

    Article  CAS  Google Scholar 

  16. Wakelin LPG, Ramonas M, Chen T K, Glaubiger D, Canellakis E S and Waring M J 1978Biochemistry 17 5057

    Article  CAS  Google Scholar 

  17. Cohen G and Eisenberg H 1969Biopolymers 8 45

    Article  CAS  Google Scholar 

  18. Crothers D M and Zimm B H 1965J. Mol. Biol. 12 525

    Article  CAS  Google Scholar 

  19. Long E C and Barton J K 1990Acc. Chem. Res. 23 271

    Article  CAS  Google Scholar 

  20. Yang J P 1991Introduction of bioinorganic chemistry (in Chinese) (Xi An: Xi An Jiao Tong University Publishers) p. 152

    Google Scholar 

  21. Chen G Z, Huang X Z, Xu J G, Zheng Z Z and Wang Z B 1990The analytical method of fluorescence (in Chinese) (Beijing: Science Publishers) p. 118

    Google Scholar 

  22. Waring M J 1981Annu. Rev. Biochem. 50 159

    Article  CAS  Google Scholar 

  23. Mee S L, Pierre A, Markovits J, Atassi G, Sablon A J and Saucier J M 1998Mol. Pharmacol. 53 213

    Google Scholar 

  24. Maiti M, Nandi R and Chauduri K 1984Indian J. Biochem. Biophys. 21 158

    CAS  Google Scholar 

  25. Laure L, Christian R, Gabriel M, Paoletti C, Bisagni E and Paoletti J 1988J. Med. Chem. 31 1951

    Article  Google Scholar 

  26. Patel D J 1979Acc. Chem. Res. 12 118

    Article  CAS  Google Scholar 

  27. Zuby G L 1988Biochemistry 2nd edn (New York: McMillan) p. 236

    Google Scholar 

  28. McCoubery A, Latham H C, Cook P R, Rodger A and Lowe G 1996FEBS Lett. 380 73

    Article  Google Scholar 

  29. Schwaller M A, Aubard J, Auclair Paoletti C and Dodin G 1989Eur. J. Biochem. 181 129

    Article  CAS  Google Scholar 

  30. Schwaller M A, Aubard J and Dodin G 1988J. Biomol. Struct. Dyn. 6 443

    CAS  Google Scholar 

  31. Waring M J, Gonazalez A, Jimenez A and Vazquez D 1979Nucleic Acids Res. 7 217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gopal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopal, M., Shahabuddin, M.S. & Inamdar, S.R. Interaction between an 8-methoxypyrimido[4′,5′:4,5] thieno (2,3-b)quinoline-4(3H)one antitumour drug and deoxyribonucleic acid. J Chem Sci 114, 687–696 (2002). https://doi.org/10.1007/BF02708861

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708861

Keywords

Navigation