Skip to main content
Log in

Oily soil removal from a polyester substrate by aqueous nonionic surfactant systems

  • Soaps. Detergents. & Cosmetics
  • CD & C Technical
  • Published:
Journal of the American Oil Chemists’ Society

Abstract

Pure mineral oil soils are removed from polyester substrates by the roll-up mechanism in nonionic surfactant systems, and the process is little affected by hardness ions or builder addition. For a given surfactant system, roll-up and removal efficiency increase with temperature until the cloud point of the nonionic is reached, whereafter a further increase in temperature decreases the rate of roll-up. In general, lower ethoxylated surfactants perform better than higher ethyxylates at low temperature, but the trend is gradually reversed as the temperature is increased. For a given degree of ethoxylation, secondary alcohol ethoxylates are more effective at rolling up mineral oil soils than their primary counterparts. Addition of a small amount of oleic acid to mineral oil soils facilitates the roll-up process (by lowering the oil/water interfacial tension) and minimizes the differences in performance among the various types of unbuilt nonionic surfactants. However, addition of highly alkaline electrolytic builders with these soils promotes oil removal by emulsification, presumably because of charge neutralization and/or transfer of the fatty acid into the aqueous phase. Conditions of high pH and low electrolyte strength inhibit the removal of 5.0% oleic acid in mineral oil soils, as exemplified by studies with added triethanolamine, ammonia, and very diluted NaOH. However, addition of divalent hardness ions to such systems promotes coarse emulsification of the soil, as does addition of relatively high concentrations of monovalent cation salts. A tentative explanation of this phenomenon is proposed. Ionic strength has little effect on the removal of 5.0% oleic acid/mineral oil soils below pH 7, as rapid roll-up is obtained regardless of added electrolytes. Similarly, ionic strength (or pH) has little effect on the removal of mineral oil containing polar, but nonionizing soils such as oleyl alcohol, as rapid rollup is achieved under a number of conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam, N.K., J. Soc. Dyers Color. 53: 121 (1937).

    CAS  Google Scholar 

  2. Young, T.A., Phil. Trans 84 (1805).

  3. Lawrence A.S.C. Chem. Ind. 1764 (1961).

  4. Stevenson, D.G., J. Soc. Cosmet. Chem. 12: 353 (1961).

    CAS  Google Scholar 

  5. Scott, B.A., J. Appl. Chem. 13: 133 (1963).

    Article  CAS  Google Scholar 

  6. Hartley, G.S. J. Chem. Soc. 1968 (1938).

  7. Dervichian, D.G., Proc. 2nd Int. Cong. Surface Activity 1: 327 (1957).

    CAS  Google Scholar 

  8. McBain, J.W., “Advances in Colloid Science,” Interscience, New York, p. 99.

  9. Schwartz, A.M., Surf. and Colloid Sci. 5: 211 (1972).

    Google Scholar 

  10. Hartley, G.S., “Wetting and Detergency,” Harvey, London, 1937 p. 153.

    Google Scholar 

  11. Lawrence, A.S.C., Trans. Faraday Soc. 33: 315 (1937).

    Google Scholar 

  12. Durham, K., “Surface Activity and Detergency,” MacMillan, London 1961 p. 131.

    Google Scholar 

  13. Ogino, K., M. Abe, N. Takesita, Bull. Chem. Soc. Japan 49: 3679 (1976).

    Article  CAS  Google Scholar 

  14. Kolthoff, W.D., I.M. Stricks, J. Phys. Colloid Chem., 52: 915 (1948).

    Article  CAS  Google Scholar 

  15. Riegleman, S., N.A. Allawala, M. Hrenoff, L.A. Strait, J. Colloid Sci. 13: 208 (1954).

    Article  Google Scholar 

  16. Durham, K., “Surface Activity and Detergency,” p. 150.

  17. Griffin, W.C., J. Soc. Cosmetic Chem. 1: 311 (1949).

    Google Scholar 

  18. Griffin, W.C., J. Soc. Cosmetic Chem. 5: 1 (1954).

    Google Scholar 

  19. Davies, J.T., E.K. Eideal, “Interfacial Phenomena,” 2nd ed., Academic Press, New York, 1963, p. 371.

    Google Scholar 

  20. “Emulsion Science”, Edited by P. Sherman, Academic Press, New York, 1968, p. 1.

    Google Scholar 

  21. Schwartz, A.M., J.W. Perry, J. Berch, “Surface Active Agents and Detergents,” Interscience, New York, 1958, p. 467.

    Google Scholar 

  22. Powney, J., J. Text. Inst. Trans. 40: 549 (1949).

    Google Scholar 

  23. Stevenson, D.G., J. Text. Inst. Trans. 42: 194 (1953).

    Google Scholar 

  24. Durham, K., “Surface Activity and Detergency,” p. 146.

  25. Stevenson, D.G., J. Textile Inst. 44: T12 (1953).

    Article  CAS  Google Scholar 

  26. “Solvent Properties of Surfactant Solutions”, Edited by K. Shinoda, Marcel Dekker, New York, 1967, p. 27.

    Google Scholar 

  27. Fort, T., Billica, H.R., Grindstaff, T.H. Text. Res. J. 36: 99 (1966).

    Article  CAS  Google Scholar 

  28. McGuire, S.E., T.P. Matson, JAOCS 52: 411 (1975).

    Article  CAS  Google Scholar 

  29. Schonfeldt, N., “Surface Active Ethylene Oxide Adducts,” Pergamon Press, 1969 pp. 388–435.

  30. Smith, S., B. Johannessen, P.O. Sherman, Text. Chem. Color. 5: 138 (1973).

    CAS  Google Scholar 

  31. Kling, W., E. Lange, I. Haussner, Milliand Textilber, 25: 198 (1945).

    CAS  Google Scholar 

  32. Stewart, J.C. C.S. Whewell, Text. Res. J. 30: 903 (1960).

    Article  CAS  Google Scholar 

  33. Ogino, K., A. Wataru, Bull. Chem. Soc. Japan 49: 1703 (1976).

    Article  CAS  Google Scholar 

  34. Ogino, K., K. Shigemura, Bull. Chem. Soc. Japan 49: 3236 (1976).

    Article  CAS  Google Scholar 

  35. Harris, J.C., W.H. Yanko, Am. Soc. Test. Mater. Bull. 49: 158 (1949).

    Google Scholar 

  36. Gordon, B.E., JAOCS 45: 367 (1968).

    Article  Google Scholar 

  37. Gordon, B.E., W.T. Shebs, R.U. Bonnar, JAOCS 44: 711 (1967).

    Article  CAS  Google Scholar 

  38. Gordon, B.E., J. Roddewig, W.T. Shebs, JAOCS 44: 289 (1967).

    Article  CAS  Google Scholar 

  39. Fort, T., H.R. Billica, C.K. Sloan, Text. Res. 1: 7 (1966).

    Article  Google Scholar 

  40. Bowers, R.C., W.C. Clinton, W.A. Zisman, Lubr. Eng. 9: 204 (1953).

    CAS  Google Scholar 

  41. Schwartz, A.M., Surf. Colloid Sci. 5: 211 (1972).

    Google Scholar 

  42. Durham, K., “Surface Activity and Detergency,” pp. 76–77.

  43. U.S. Patent No. 3,983,078.

  44. Durham K., “Surface Activity and Detergency,” pp. 20–25.

  45. Saito, H., K. Shinoda, J. Colloid Interface Sci. 24: 10 (1967).

    Article  CAS  Google Scholar 

  46. Speakman, J.B., and N.H. Chamberlain, Trans. Faraday Soc. 29: 358 (1933).

    Article  CAS  Google Scholar 

  47. Durham, K., “Surface Activity and Detergency,” p. 93.

  48. Vitale, P.T., J. Ross, and A.M. Schwartz, JAOCS 32: 200 (1955).

    Article  Google Scholar 

  49. Sanders, H.L., J.M. Lambert, Text. Res. J. 21: 680 (1951).

    Article  CAS  Google Scholar 

  50. Vaughn, T.H., H.R. Sater, M.G. Kramer, “Ind. Eng. Chem.”, 46: 1934 (1954).

    Article  CAS  Google Scholar 

  51. Adamson, A.W., “Physical Chemistry of Surfaces,” 2nd Ed., Interscience, New York, p. 490.

  52. Mansfield, W.W., “Aust. J. Appl. Sci.” 3: 193 (1952).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Dillan, K.W., Goddard, E.D. & McKenzie, D.A. Oily soil removal from a polyester substrate by aqueous nonionic surfactant systems. J Am Oil Chem Soc 56, 59–70 (1979). https://doi.org/10.1007/BF02671763

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02671763

Keywords

Navigation