Skip to main content
Log in

New materials and structures for photovoltaics

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Despite the fact that over the years crystal chemists have discovered numerous semiconducting substances, and that modern epitaxial growth techniques are able to produce many novel atomic-scale architectures, current electronic and opto-electronic technologies are based but on a handful of ∼10 traditional semiconductor core materials. This paper surveys a number of yet-unexploited classes of semiconductors, pointing to the much-needed research in screening, growing, and characterizing promising members of these classes. In light of the unmanageably large number of a-priori possibilities, we emphasize the role that structural chemistry and modern computer-aided design must play in screening potentially important candidates. The basic classes of materials discussed here include nontraditional alloys, such as non-isovalent and heterostructural semiconductors, materials at reduced dimensionality, including superlattices, zeolite-caged nanostructures and organic semiconductors, spontaneously ordered alloys, interstitial semiconductors, filled tetrahedral structures, ordered vacancy compounds, and compounds based on d and f electron elements. A collaborative effort among material predictor, material grower, and material characterizer holds the promise for a successful identification of new and exciting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Recent books summarizing modern electronic structure methods includeElectronic, Structure, Dynamics, and Quantum-Structural Properties of Condensed Matter, eds. J.T. Devereese and D. Van-Camp (New York: Plenum, 1985). Also,The Electronic Structure of Complex Systems, Vol. 113 of NATO Advanced Study Institute, eds. P. Phariseau and W.M. Temmorman (New York: Plenum, 1982).

    Google Scholar 

  2. J.C. Woolley,Compound Semiconductors, eds. R.K. Willardson and H.L. Goering (New York: Reinhold, 1962).

    Google Scholar 

  3. Numerical Data and Functional Relationships in Science and Technology, Vol. 17 of Landolt-Bornstein New Series (Berlin: Springer-Verlag).

  4. M.B. Panish and M. Illegms,Prog. Solid State Chem. 7, 39 (1972); G.B. Stringfellow,J. Cryst. Growth 27, 21 (1976); 58, 194 (1982).

    Article  Google Scholar 

  5. J.A. Van Vechten and T. K. Bergstresser,Phys. Rev. B 1, 3351 (1970).

    Article  Google Scholar 

  6. J.E. Bernard and A. Zunger,Phys. Rev. B 36, 3199 (1987); 34, 5992 (1986).

    Article  CAS  Google Scholar 

  7. S.-H. Wei and A. Zunger,Phys. Rev. B 39, 3279 (1989).

    Article  CAS  Google Scholar 

  8. R. Magri, S. Froyen and A. Zunger,Phys. Rev. B 44, 7967 (1991); 43, 1662 (1991).

    Google Scholar 

  9. See M. Glicksman and W.D. Kraeft,Solid-State Electron. 28, 151 (1985) and references therein.

    Article  CAS  Google Scholar 

  10. D. Vanderbilt and C. Lee,Phys. Rev. B 45, 11, 192 (1992).

    Article  Google Scholar 

  11. R. Osorio, S. Froyen, and A. Zunger,Phys. Rev. B 43, 14,055 (1991).

    Article  CAS  Google Scholar 

  12. A. Aresti et al.,J. Electrochem. Soc. 124, 766 (1977); J.N. Gan et al.,Phys. Rev. B 13, 3610 (1976); L. Garbato and T. Ledda,J. Solid State Chem. 30, 189 (1979).

    Article  CAS  Google Scholar 

  13. S.-H. Wei, L.G. Ferreira and A. Zunger,Phys. Rev. B 41, 8240 (1990); L.G. Ferreira, S.-H. Wei and A. Zunger,Phys. Rev. B 40, 3197 (1989); A. Mbaye, L.G. Ferreira and A. Zunger,Phys. Rev. Lett. 58, 49 (1987).

    Article  CAS  Google Scholar 

  14. A. Sher, M. Van Schilfgaarde, A.B. Chen and W. Chen,Phys. Rev. B 36, 4279 (1987).

    Article  Google Scholar 

  15. R. Osorio, Z.W. Lu, S.-H. Wei and A. Zunger,Phys. Rev. B (in press); K. Newman and X. Xiang,Phys. Rev. B 44, 4677 (1991).

  16. M. J. Jou, Y.T. Cheng, H. R. Jen and G.B. Stringfellow,Appl. Phys. Lett. 52, 549 (1988).

    Article  CAS  Google Scholar 

  17. J.E. Greene,J. Vac. Sci. Technol. B 1, 229 (1983).

    Article  CAS  Google Scholar 

  18. D.M. Wood and A. Zunger,Phys. Rev. B 40, 4062 (1989); 38, 12,756 (1988);Phys. Rev. Lett. 61, 1501 (1988).

    Article  CAS  Google Scholar 

  19. A. Zunger and D. M. Wood,J. Cryst. Growth 98, 1 (1989).

    Article  CAS  Google Scholar 

  20. A. Mbaye, D.M. Wood and A. Zunger,Phys. Rev. B 37, 3008 (1988);Appl. Phys. Lett. 49, 782 (1986).

    Article  CAS  Google Scholar 

  21. K. Kim and E.A. Stern,Phys. Rev. B 32, 1019 (1988); L.C. Davis and H. Holloway,Phys. Rev. B 38, 4294 (1988).

    Article  Google Scholar 

  22. C. Weisbuch and B. Vinter,Quantum Semiconductor Structures (New York: Academic Press, 1991).

    Google Scholar 

  23. G.H. Doehler,Quantum Electr., QE 22, 1683 (1986).

    Google Scholar 

  24. L. Esaki and R. Tsu, IBM,J. Res. Develop. 14, 62 (1970);

    Google Scholar 

  25. J.N. Schulman and T.C. McGill,Appl. Phys. Lett. 34, 663 (1979).

    Article  CAS  Google Scholar 

  26. D.L. Smith, T.C. McGill and J.N. Schulman,Appl. Phys. Lett. 43, 180(1983).

    Article  CAS  Google Scholar 

  27. J. Reno and J.P. Faurie,Appl. Phys. Lett. 49, 409 (1986).

    Article  CAS  Google Scholar 

  28. S.H. Wei and A. Zunger,Appl. Phys. Lett. 53, 2077 (1988).

    Article  CAS  Google Scholar 

  29. R. Cingolani, L. Tapper and K. Ploog,Appl. Phys. Lett. 56, 1233 (1990).

    Article  CAS  Google Scholar 

  30. M.A. Gell, D. Ninno, M. Jaros and D.C. Herbert,Phys. Rev. B 34, 2416 (1986).

    Article  CAS  Google Scholar 

  31. D.B. Laks and A. Zunger,Phys. Rev. B 45, 11,411 (1992).

    CAS  Google Scholar 

  32. G.C. Osboum,J. Vac. Sci Technol. B 2, 176 (1984).

    Article  Google Scholar 

  33. S.R. Kurtz, G.C. Osburn, R.M. Biefield, L.R. Dawson and H. J. Stein.,Appl. Phys. Lett. 52, 831 (1988).

    Article  CAS  Google Scholar 

  34. R.G. Dandrea and A. Zunger,Appl. Phys Lett. 57, 1031 (1990).

    Article  CAS  Google Scholar 

  35. T. Takarohashi and M. Ozeki,Jpn. J. Appl. Phys. 30, L956 (1991);J. Cryst. Growth 115, 538 (1991).

    Article  Google Scholar 

  36. S. Froyen, D.M. Wood, and A. Zunger,Phys. Rev. B 36, 4547 (1987); 37, 6893 (1988);Phys. Rev. Lett. 62, 975 (1989);Appl. Phys. Lett. 54, 2435 (1989);Thin Solid Films, 183, 33 (1989).

    Article  CAS  Google Scholar 

  37. See review by T.P. Pearsail,Semiconductors and Semimetals,

  38. (New York: Academic Press, 1990), p. 1.

  39. J.M. Gaines, P.M. Petroff, H. Kroemer, R.J. Simes, R.S. Gells and J.H. EnglishJ.Vac Sci. Technol. B6, 1378 (1988).

    Google Scholar 

  40. P.M. Petroff, A.C. Gossard and W. Wiegman,Appl. Phys. Lett. 45, 620 (1984).

    Article  CAS  Google Scholar 

  41. T. Fukui and H. Saito,J. Vac Sci. Technol. B6, 1373 (1988).

    Google Scholar 

  42. K.C. Hsieh, J.N. Baillaryeon and K.Y. Cheng,Appl. Phys. Lett. 57, 2244 (1990); ibid 60, 2892 (1992); K.C. Hsieh, J.N. Baillaryeon, K.Y. Cheng, S. Bailey, C.H. Uri and M. Mochel, Mat. Res. Soc, xx, 263 (1990). See also P.M. Petroff, M. Tsuchiya and L.A. Coldren,Surf. Sci. 228, 24 (1990).

    Article  CAS  Google Scholar 

  43. S.A. Chalmers, A.C. Gossard, P.M. Petroff, J.M. Gaines and H. Kroemer,J. Vac. Sci. Technol. B7, 1357 (1989).

    Google Scholar 

  44. S. Chalmers, A.C. Gossard and H. Kroemer,J.Cryst. Growth 111, 647 (1990).

    Article  Google Scholar 

  45. M.S. Miller, H. Weman, C.E. Pryor, M. Krishnamurty, P.M. Petroff, H. Kroemer and J.L. Merz,Phys. Rev. Lett. 68, 3464 (1992).

    Article  CAS  Google Scholar 

  46. K.Y. Cheng, K.C. Hsieh, J.N. Baillaryeon and A. Mascarenhas,Inst. Phys. Conf. Ser. 120, 589 (1991).

    Google Scholar 

  47. Materials Issues in Micrystalline Semiconductors, eds. P.M. Fauchet, K. Tanaka and C.C. Tsai (Pittsburgh, PA: Materials Research Society, 1990).

    Google Scholar 

  48. W.M. Meier and D.H. Olson,Atlas of Zeolite Structure Types, 3rd Ed. (Guildford, Eng.: Butterworth, 1992). G.D. Stucky, E. Ramli, D. Margolese, P. Petroff, S. Tomiya, J. Nicol, C. Glinka, J. Rush,Nanophase and Nanocomposite Materials (Pittsburgh, PA: Materials Research Society, to be published in 1993); R.K. Iler,The Chemistry of Silica (New York: J. Wiley and Sons, 1979); D. Vaughn and R.J. Lussier,Proc. 5th Intern. Conf on Zeolites (L. V. C. Rees ed. Hyden), 94 (1980); W.M. Meier,New Developments in Zeolite Science and Technology, Stud. Surf. Sci. Catal., 13, eds. Y. Murakami, A. Ijima, and J. W. Ward (New York: Elsevier Science) 28 (1986).

    Google Scholar 

  49. S. Tomiya, P.M. Petroff, D. Margolese, V. Srdanovand and G. Stucky,Nanophase and Nanocomposite Materials (Pittsburgh, PA: Materials Research Society, to be published in 1993).

    Google Scholar 

  50. F. Gutmann and L.E. Lyons,Organic Semiconductors (New York: Wiley, 1967).

    Google Scholar 

  51. D.L. Morel et al.,Conf. Rec. 10th IEEE Photovoltaic Specialists Conf. (New York: IEEE, 1974), p. 107.

    Google Scholar 

  52. F.F. So and S.R. Forrest,Phys. Rev. Lett. 66, 2649 (1991).

    Article  CAS  Google Scholar 

  53. A. Zunger,Appl. Phys. Lett. 50 (1987), p. 164.

    Article  CAS  Google Scholar 

  54. J. Bernard, S.H. Wei, D.M. Wood and A. Zunger,Appl. Phys. Lett. 52, 311 (1987); S.-H. Wei and A. Zunger,Appl. Phys. Lett. 56, 662 (1990).

    Article  Google Scholar 

  55. R. Osorio, E. Bernard, S. Froyen and A. Zunger,Phys. Rev. B 45, 11, 173 (1992).

    Article  CAS  Google Scholar 

  56. T. Suzuki et al.,Jpn. J. Appl. Phys. 27, 2098 (1988); T. Nishino et al.,Appl. Phys. Lett. 53, 583 (1988).

    Article  CAS  Google Scholar 

  57. S.-H. Wei and A. Zunger,Appl. Phys. Lett. 58, 2684 (1991) and unpublished results.

  58. S.R. Kurtz, L.R. Dawson, R.M. Biefeld, D.M. Follstaedt and B.L. Doyle,Phys. Rev. B 46, 1909 (1992).

    Article  CAS  Google Scholar 

  59. D.M. Wood and A. Zunger,Phys. Rev B 34, 4105 (1986).

    Article  CAS  Google Scholar 

  60. A.E. Carlson, D.M. Wood and A. Zunger,Phys. Rev. B 32, 1386 (1985); S.H. Wei and A. Zunger,Phys. Rev. Lett. 56, 528 (1986); D.M. Wood, A. Zunger and R. de Groot,Phys. Rev. B 31, 2570 (1985); N.E. Christensen,Phys. Rev. B 32, 6490 (1985).

    Article  Google Scholar 

  61. K. Kuriyama and F. Nakamura,Phys Rev. B 36, 4439 (1987);Appl. Phys. Lett. 69, 7812 (1991); R. Bacewicz and T.F. Ciszek,Appl. Phys. Lett. 52, 1150 (1988); A. Nelson, M. Engelhardt and M. Hochst,J. Elect. Spect. 51, 623 (1990).

    Article  CAS  Google Scholar 

  62. J.L. Shay and J.H. Wernicke,Ternary Chalcopyrites (Oxford, U.K.: Pergamon Press, 1975).

    Google Scholar 

  63. J.L. Martins and A. Zunger,Phys. Rev. B 32, 2689 (1985).

    Article  CAS  Google Scholar 

  64. J. Jaffe and A. Zunger,Phys. Rev. B 27, 5176 (1983); 28, 5822 (1983); 30, 741 (1984).

    Article  CAS  Google Scholar 

  65. J.E. Jaffe and A. Zunger,Phys. Rev. B 29, 1882 (1984).

    Article  CAS  Google Scholar 

  66. E. Parthé,Crystal Chemistry of Tetrahedral Structures (New York: Gordon & Breach, 1964).

    Google Scholar 

  67. J.E. Bernard and A. Zunger,Phys. Rev. B 37, 6835 (1988).

    Article  CAS  Google Scholar 

  68. E. Bucher,Photoelectrochemistry and Photovoltaics of Layered Semiconductors, ed. A. Aruchamy (Amsterdam, the Netherlands: Kluwer, 1991).

    Google Scholar 

  69. F. Gutmann,Modern Bioelectrochemistry, eds. F. Guttmann and H. Keyzer (New York: Plenum, 1986), pp. 177–197.

    Google Scholar 

  70. R. Pethig, ibid, pp. 199–231.

    Google Scholar 

  71. R.R. Birge et al.,Nonlinear Electrodynamics in Biological Systems, eds. W.R. Adey and A.F. Lawrence (New York: Plenum, New York, 1984), pp. 107–120.

    Google Scholar 

References For Table I

  1. A. Ooe and S. Iida,Jpn. J. Appl. Phys. 29, 1484 (1990).

    Article  CAS  Google Scholar 

  2. V.G. Lambrecht,Mat. Res. Bull. 8, 1383 (1973).

    Article  CAS  Google Scholar 

  3. L. Garbato, F. Ledda and P. Manca,Jpn. J. Appl. Phys., Suppl., 19–3, 67 (1980).

  4. A. Aresti et al.,J. Electrochem. Soc 124, 766 (1977).

    Article  CAS  Google Scholar 

  5. J.N. Gan et al.,Phys. Rev. B, 12, 5797 (1975); ibid, 13, 3610 (1976).

    Article  CAS  Google Scholar 

  6. D. Chippaux and A. Deschanvres,J. Solid State Chem. 45, 200 (1982).

    Article  CAS  Google Scholar 

  7. W. Gebicki, M. Igalson and R. Trykozko,Acta Phys. Pol. A 77, 367 (1990).

    Google Scholar 

  8. L. Garbato and F. Ledda,J. Solid State Chem. 30, 189 (1979).

    Article  CAS  Google Scholar 

  9. C. Neal et al.,J. Phys. D 22, 1347 (1989).

    Article  CAS  Google Scholar 

  10. R. Tovar et al.,J. Cryst. Growth 106, 629 (1990).

    Article  CAS  Google Scholar 

  11. M. Quintero et al.,J. Solid State Chem. 63, 110 (1986).

    Article  CAS  Google Scholar 

  12. M. Quintero et al.,J. Solid State Chem. 87, 456 (1990).

    Article  CAS  Google Scholar 

  13. R. Tovar et al.,Phys. Status Solidi A 111, 405 (1989).

    Article  CAS  Google Scholar 

  14. M. Quintero and J. C. Wooley,Phys. Status Solidi A 92, 449 (1985).

    Article  CAS  Google Scholar 

  15. F. Grima et al.,Phys. Status Solidi A 107, 165 (1988).

    Article  CAS  Google Scholar 

References For Table II

  1. M.A.E. Maslout and C. Gleitzer,Compt. Rendus. 271 Ser C, 1177 (1970).

    Google Scholar 

  2. R. Juza and F. Hund,Naterwiss 33, 121 (1946); Z. Anorg,Allg. Chem. 257, 1 (1948).

    Article  CAS  Google Scholar 

  3. H. Nowotny and K. Bachmayer,Monatshafte. Chem. 81, 488 (1950); ibid 80, 735 (1949).

    Article  CAS  Google Scholar 

  4. F. Laves,Taschbenbuch für Chemiker und Physiker, eds. J. D’Ans and E. Lax (Berlin, Germany: Springer-Verlag, 1943).

    Google Scholar 

  5. R. Juza, W. Dethlefsen, H. Seidel and K. Benda,Z. Anorg. Allg. Chem., 356, 253 (1968); R. Juza, K. Langes and K Benda,Anorg, Chem. Intnt. Edition, 7, 360 (1968).

    Article  CAS  Google Scholar 

  6. M.A. El Maslout, J.P. Motte, C. Gleitzer and J. Aubry,Compt. Rendus. 273, Ser. C, 707 (1971).

    Google Scholar 

  7. H. Nowotny et al.,Monatshafte. Chem. 82, 720 (1951).

    Article  CAS  Google Scholar 

  8. W.B. Pearson,Handbook of Lattice Spacings and Structure of Metals and Alloys (New York: Pergamon Press, 1958), Vol. 1, p. 400 describes NaHgAs as FCC, cubic, C1 Type Structure. See also H. Nowotny,Holub, Monatshafte Chem. 91, 877 (1960).

    Google Scholar 

  9. H. Nowotny and W. Sibert,Z. Metallkd. 33, 391 (1941).

    CAS  Google Scholar 

  10. H. Nowotny,Metallforsch 1, 138 (1946).

    Google Scholar 

  11. H. Nowotny,Z. Metallkd. 7, 273 (1942).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zunger, A., Wagner, S. & Petroff, P.M. New materials and structures for photovoltaics. J. Electron. Mater. 22, 3–16 (1993). https://doi.org/10.1007/BF02665719

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665719

Key words

Navigation