Skip to main content
Log in

The role of chemokines in inflammation

  • Review
  • Published:
International Journal of Clinical and Laboratory Research

Abstract

Chemokines, together with adhesion molecules, cytokines, and proteases, are essential for the directional migration of leukocytes during normal and inflammatory processes. Interleukin-8 and monocyte chemotactic protein-1 are the best-characterized members of the C-X-C and C-C chemokine subfamilies, respectively. However, more than 20 human chemokines have been identified but are only partially characterized at the biological level. Chemokines are involved in chemotaxis of monocytes, lymphocytes, neutrophils, eosinophils, basophils, natural killer cells, dendritic cells, and endothelial cells. This review describes the chemokine subfamilies, the chemokine producer and target cells, their receptors, singal transduction mechanisms, and the role of chemokines during physiological and pathological conditions. More and more evidence points to a role for chemokines in chemotaxis-related phenomena, such as the expression of adhesion molecules, the secretion of proteinases, inhibition of apoptosis, hematopoiesis, and angiogenesis. Chemokines are also involved in diseases such as cancer (tumor regression and tumor metastasis), autoimmune diseases, and bacterial or viral infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tedder TF, Steeber DA, Chen A, Engel P. The selectins: vascular adhesion molecules. FASEB J: 9:866.

  2. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76:301.

    Article  PubMed  CAS  Google Scholar 

  3. Adams DH, Shaw S. Leucocyte-endothelial interactions and regulation of leucocyte migration. Lancet 1994; 343:831.

    Article  PubMed  CAS  Google Scholar 

  4. Girard J-P, Springer TA. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today 1995; 16:449.

    Article  PubMed  CAS  Google Scholar 

  5. Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science 1995; 268:233.

    Article  PubMed  CAS  Google Scholar 

  6. Van Damme J. Interleukin-8 and related chemotactic cytokines. In: Thomson A. ed. The cytokine handbook London: Academic Press: 1994: 185–208.

    Google Scholar 

  7. Baggiolini M, Dewald B, Boser B. Interkeukin-8 and related chemotactic cytokines-CXC and CC chemokines. Adv Immunol 1995; 55:97.

    Google Scholar 

  8. Taub DD, Oppenheim JJ. Chemokines, inflammation and the immune system. Ther Immunol 1994; 1:229.

    PubMed  CAS  Google Scholar 

  9. Schall TJ. The chemokines. In: Thomson A, ed. The cytokine handbook. London: Academic Press; 1994:419–460.

    Google Scholar 

  10. Opdenakker G, Van Damme J. Cytokines and proteases in invasive processes: molecular similarities between inflammation and cancer. Cytokine 1992; 4:251.

    Article  PubMed  CAS  Google Scholar 

  11. Pozo MA del, Sánchez-Mateos P, Nieto M, Sánchez-Madrid F. Chemokines regulate cellulate polarization and adhesion receptor redistribution during lymphocyte interaction with endothelium and extracellular matrix. Involvement of cAMP signaling pathway. J Cell Biol 1995; 131:495.

    Article  PubMed  Google Scholar 

  12. Pozo MA del, Sánchez-Mateos P, Sánchez-Madrid F. Cellular polarization induced by chemokines: a mechanism for leukocyte recruitment? Immunol Today 1996; 17:127.

    Article  PubMed  Google Scholar 

  13. Wolosewick JJ. Distribution of actin in migration leukocytes in vivo. Cell Tissue Res 1984; 236:517.

    Article  PubMed  CAS  Google Scholar 

  14. Goldman G, Welbourn R, Alexander S, Klausner JM, Wiles M, Valeri CR, Shepro D, Hechtman HB, Modulation of pulmonary permeability in vivo with agents that affect the cytoskeleton. Surgery 1991; 109:533.

    PubMed  CAS  Google Scholar 

  15. Schuber C, Christophers E, Swensson O, Isei T. Transendothelial cell diapedesis of neutrophils in inflamed human skin. Arch Dermatol Res 1989; 281:475.

    Article  Google Scholar 

  16. Oláh I, Glick B. Re-evaluation of the lymphocyte migration through the high-endothelial venules. Light and electron microscopic studies on the opossum's lymph node. Acta Biol Acad Sci Hung 1980; 31:207.

    PubMed  Google Scholar 

  17. Lewis RE, Granger HJ. Diapedesis and the permeability of venous microvessels to protein macromolecules: the impact of leukotriene B4 (LTB4). Microvasc Res 1988; 35:27.

    Article  PubMed  Google Scholar 

  18. Thureson-Klein Å, Hedqvist P, Lindbom L. Leukocyte diapedesis and plasma extravasation after leukotriene B4: lack of structural injury to endothelium. Tissue Cell 1986; 18:1.

    Article  PubMed  CAS  Google Scholar 

  19. Lewis RE, Miller RA, Granger HJ. Acute microvascular effects of the chemotactic peptideN-formyl-methionyl-leucyl-phenyl-alanine: comparisons with leukotriene B4. Microvasc Res 1989; 37:53.

    Article  PubMed  CAS  Google Scholar 

  20. Rampart M, De Smet W, Fiers W, Herman AG. Inflammatory properties of recombinant tumor necrosis factor in rabbit skin in vivo. J Exp Med 1989; 169:2227.

    Article  PubMed  CAS  Google Scholar 

  21. Van Damme J, Rampart M, Conings R, Decock B, Van Osselaer N, Willems J, Billiau A. The neutrophil-activating proteins interleukin 8 and β-thromboglobulin: in vitro and in vivo comparison of NH2-terminally processed forms. Eur J Immunol 1990; 20:2113.

    Article  PubMed  Google Scholar 

  22. Van Osselaer N, Van Damme J, Rampart M, Herman AG. Increased microvascular permeability in vivo in response to intradermal injection of neutrophil-activating protein (NAP-2) in rabbit skin. Am J Pathol 1991; 138:23.

    PubMed  Google Scholar 

  23. Yoshida T, Imai T, Kakizaki M, Nishimura M, Yoshie O. Molecular cloning of a novel C- or γ-type chemokine, SCM-1. FEBS Lett 1995; 360:155.

    Article  PubMed  CAS  Google Scholar 

  24. Kennedy J, Kelner GS, Kleyensteuber S, Schall TJ, Weiss MC, Yssel H, Schneider PV, Cocks BG, Bacon KB, Zlotnik A. Molecular cloning and functional characterization of human lymphotactin. J Immunol 1995; 155:203.

    PubMed  CAS  Google Scholar 

  25. Haelens A, Wuyts A, Proost P, Struyf S, Opdenakker G, Van Damme J. Leukocyte migration and activation by murine chemokines. Immunobiology. In press.

  26. Tashiro K, Tada H, Heilker R, Shirozu M, Nakano T, Honjo T. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 1993; 261:600.

    Article  PubMed  CAS  Google Scholar 

  27. Proost P, Wuyts A, Conings R, Lenaerts J-P, Billiau A, Opdenakker G, Van Damme J. Human and bovine granulocyte chemotactic protein-2: complete amino acid sequence and functional characterization as chemokines. Biochemistry 1993; 32:10170.

    Article  PubMed  CAS  Google Scholar 

  28. Liao F, Rabin RL, Yannelli JR, Koniaris LG, Vanguri P, Farber JM. Human MIG chemokine: biochemical and functional characterization. J Exp Med 1995; 182:1301.

    Article  PubMed  CAS  Google Scholar 

  29. Proost P, De Wolf-Peeters C, Conings R, Opdenakker G, Billiau A, Van Damme J. Identification of a novel granulocyte chemotactic protein (GCP-2) from human tumor cells. In vitro and in vivo comparison with natural forms of GRO, IP-10 and IL-8. J Immunol 1993; 150:1000.

    PubMed  CAS  Google Scholar 

  30. Roth SJ, Carr MW, Springer TA. C-C chemokines, but not the C-X-C chemokines interleukin-8 and interferon-γ inducible protein-10, stimulate transendothelial chemotaxis of T lymphocytes. Eur J Immunol 1995; 25:3482.

    Article  PubMed  CAS  Google Scholar 

  31. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiak J, Van Damme J, Walz A, Marriott D, Chan S-Y, Roczniak S, Shanafelt AB. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 1995; 270:27348.

    Article  PubMed  CAS  Google Scholar 

  32. Farber JM. Hu MIG: a new human member of the chemokine family of cytokines. Biochem Biophys Res Commun 1993; 192:223.

    Article  PubMed  CAS  Google Scholar 

  33. Schnyder-Candrian S, Strieter RM, Kunkel SL, Walz A. Interferon-α and interferon-γ down-regulate the production of interleukin-8 and ENA-78 in human monocytes. J Leukoc Biol 1995; 57:929.

    PubMed  CAS  Google Scholar 

  34. Proost P, Wuyts A, Van Damme J. Human monocyte chemotactic proteins-2 and-3: structurals and functional comparison with MCP-1. J Leukoc biol 1996; 59:67.

    PubMed  CAS  Google Scholar 

  35. Van Damme J, Proost P, Lenaerts J-P, Opdenakker G. Structural and functional identification of two human, tumorderived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J Exp Med 1992; 176:59.

    Article  PubMed  Google Scholar 

  36. Kitaura M, Nakajiama T, Imai T, Harada S, Combadiere C, Tiffany HL, Murphy PM, Yoshie O. Molecular cloning of human eotaxin, an eosinophil-selective CC chemokine, and identification of a specific eosinophil eotaxin receptor, CC chemokine receptor 3. J Biol Chem 1996; 271:7725.

    Article  PubMed  CAS  Google Scholar 

  37. Uguccioni M, Loetscher P, Forssmann U, Dewald B, Li H, hensche Lima S, Li Y, Kreider B, Garotta G, Thelen M, Baggiolini M. Monocyte chemotactic protein 4 (MCP-4), a novel structural and functional analogue of MCP-3 and eotaxin. J Exp Med 1996; 183:2379.

    Article  PubMed  CAS  Google Scholar 

  38. Ponath PD, Qin S, Ringler DJ, Clark-Lewis I, Wang J, Kassam N, Smith H, Shi X, Gonzalo J-A, Newman W, Guiterrez-Ramos J-C, Mackay CR. Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J Clin Invest 1996; 97:604.

    PubMed  CAS  Google Scholar 

  39. Garcia-Zepeda EA, Rothenbergh ME, Ownbey RT, Celestin J, Leder P, Luster AD. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nature Med 1996; 2:449.

    Article  PubMed  CAS  Google Scholar 

  40. Sozzani S, Zhou D, Locati M, Rieppi M, Proost P, Magazin M, Vita N, Van Damme J, Mantovani A. Receptors and transduction pathways for monocyte chemotactic protein-2 and monocyte chemotactic protein-3. Similarities and differences with MCP-1. J Immunol 1994; 152:3615.

    PubMed  CAS  Google Scholar 

  41. Bizzarri C, Bertini R, Bossù P, Sozzani S, Mantovani A, Van Damme J, Tagliabue A, Boraschi D. Single-cell analysis of chemotactic protein-1-regulated cytosolic Ca2+ increase in human adherent monocytes. Blood 1995; 86:2388.

    PubMed  CAS  Google Scholar 

  42. Van Snick J, Houssiau F, Proost P, Van Damme J, Renauld J-C. 1-309/TCA3 chemokine protects murine T cell lymphomas against dexamethasone-induced apoptosis. J Immunol 1996; 157:2570.

    PubMed  Google Scholar 

  43. Schulz-Knappe P, Mägert H-J, Dewald B, Meyer M, Cetin Y, Kubbies M, Tomeczkowski J, Kirchhoff K, Raida M, Adermann K, Kist A, Reinecke M, Sillard R, Pardigol A, Uguccioni M, Forssmann W-G. HCC-1, a novel chemokine from human plasma. J Exp Med 1996; 183:295.

    Article  PubMed  CAS  Google Scholar 

  44. Ben-Baruch A, Michiel DF, Oppenheim JJ. Signal and receptors involved in recruitment of inflammatory cells. J Biol Chem 1995; 270:11703.

    Article  PubMed  CAS  Google Scholar 

  45. Horuk R. The interleukin-8-receptor family: from chemokines to malaria. Immunol Today 1994; 15:169.

    Article  PubMed  CAS  Google Scholar 

  46. Kelvin DJ, Michiel DF, Johnston JA, Lloyd AR, Sprenger H, Oppeheim JJ, Wang J-M. Chemokines and serpentines: the molecular biology of chemokine receptors. J Leukoc Biol 1993; 54:604.

    PubMed  CAS  Google Scholar 

  47. Murphy PM. The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 1994; 12:593.

    Article  PubMed  CAS  Google Scholar 

  48. Richardson RM, DuBose RA, Ali H, Tomhave ED, Haribabu B, Snyderman R. Regulation of human interleukin-8 receptors A: identification of a phosphorylation site involved in modulating receptors functions. Biochemistry 1995; 34:14193.

    Article  PubMed  CAS  Google Scholar 

  49. Chuntharapai A, Kim KJ. Regulation of the expression of IL-8 receptor A/B by IL-8: possible functions of each receptor. J Immunol 1995; 155L2587.

    PubMed  CAS  Google Scholar 

  50. Ahuja SK, Lee JC, Murphy PM. CXC chemokines bind to unique sets of selectivity determinants that can function independently and are broadly distributed on multiple domains of human interleukin-8 receptors B. J Biol Chem 1996; 271:225.

    Article  PubMed  CAS  Google Scholar 

  51. Ben-Baruch A, Bengali KM, Biragyn A, Johnston JJ, Wang J-M, Kim I, Chuntharapai A, Michiel DF, Oppenheim JJ, Kelvin DJ. Interleukin-8 receptor β. The role of the carboxyl terminus in signal transduction. J Biol Chem 1995; 270:9121.

    Article  PubMed  CAS  Google Scholar 

  52. Petzelbauer P, Watson CA, Pfau SE, Pober JS. IL-8 and angiogenesis: evidence that human endothelial cells lack receptors and do not respond to IL-8 in vitro. Cytokine 1995; 7:267.

    Article  PubMed  CAS  Google Scholar 

  53. Morohashi H, Miyawaki T, Nomura H, Kuno K, Murakami S, Matsushima K, Mukaida N. Expression of both types of human interleukin-8 receptors on mature neutrophils, monocytes, and natural killer cells. J Leukoc Biol 1995; 57:180.

    PubMed  CAS  Google Scholar 

  54. Power CA, Clemetson JM, Clemetson KJ, Wells TNC. Chemokine and chemokine receptor mRNA expression in human platelets. Cytokine 1995; 7:479.

    Article  PubMed  CAS  Google Scholar 

  55. Manna SK, Samanta AK. Upregulation of interleukin-8 receptor in human polymorphonuclear neutrophils by formyl peptide and lipopolysaccharide. FEBS Lett 1995; 367:117.

    Article  PubMed  CAS  Google Scholar 

  56. Manna SK, Bhattacharya C, Gupta SK, Samanta AK. Regulation of interleukin-8 receptor expression in human polymorphonuclear neutrophils. Mol Immunol 1995; 32:883.

    Article  PubMed  CAS  Google Scholar 

  57. Lacy M, Jones J, Whittemore SR, Haviland DL, Wetsel RA, Barnum SR. Expression of the receptors for the C5a anaphylatoxin, interleukin-8 and FMLP by human astrocytes and microglia. J Neuroimmunol 1995; 61:71.

    Article  PubMed  CAS  Google Scholar 

  58. Cacalano G, Lee J, Kikly K, Ryan AM, Pitts-Meek S, Hutgren B, Wood WI, Moore MW Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 1994; 265:682.

    Article  PubMed  CAS  Google Scholar 

  59. Combadiere C, Ahuja SK, Van Damme J, Tiffany HL, Gao J-L, Murphy PM. Monocyte chemoattrachant protein-3 is a functional ligand for CC chemokine receptors 1 and 2B. J Biol Chem 1995; 270:29671.

    Article  PubMed  CAS  Google Scholar 

  60. Ben-Baruch A, Xu L, Young PR, Bengali K, Oppenheim JJ, Wang JM. Monocyte chemotactic protein-3 (MCP-3) interacts with multiple leukocyte receptors. C-C CKR-1, a receptor for macrophage inflammatory protein 1α/RANTES is also a functional receptor for MCP-3. J Biol Chem 1995; 270:22123.

    Article  PubMed  CAS  Google Scholar 

  61. Gao J-L, Kuhns DB, Tiffany HL, McDermott D, Li X, Francke U, Murphy PM. Structure and functional expression of the human macrophage inflammatory protein 1 α/RANTES receptor. J Exp Med 1993; 177:1421.

    Article  PubMed  CAS  Google Scholar 

  62. Neote K, DiGregorio D, Mak JY, Horuk R, Shall TJ. Molecular cloning, functional expression and signaling characteristics of a C-C chemokine receptor. Cell 1993; 72:415.

    Article  PubMed  CAS  Google Scholar 

  63. Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ, Coughlin SR. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci USA 1994; 91:2752.

    Article  PubMed  CAS  Google Scholar 

  64. Franci C, Wong LM, Van Damme J, Proost P, Charo IF. Monocyte chemoattractant protein-3, but not monocyte chemoattractant protein-2, is a functional ligand of the human monocyte chemoattractant protein-1 receptor. J Immunol 1995; 154:6511.

    PubMed  CAS  Google Scholar 

  65. Daugherty B, Siciliano SJ, DeMarino, JA, Malkowitz L, Sirotina A, Springer MS. Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J Exp Med 1996; 183:2349.

    Article  PubMed  CAS  Google Scholar 

  66. Combadiere C, Ahuja SK, Murphy PM. Cloning and functional expression of a human eosinophil CC chemokine receptor. J Biol Chem 1995; 270:16491 and 30235 (correction).

    Article  PubMed  CAS  Google Scholar 

  67. Power CA, Meyer A, Nemeth K, Bacon KB, Hoogewerf AJ, Proudfoot AEI, Wells TNC. Molecular cloning and functional expression of a novel CC chemokine receptor cDNA from a human basophilic cell line. J Biol Chem 1995; 270:19495.

    Article  PubMed  CAS  Google Scholar 

  68. Samson M, Labbé O, Mollereau C, Vassart G, Parmentier M. Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry 1996; 35:3362.

    Article  PubMed  CAS  Google Scholar 

  69. Szabo MC, Soo KS, Zlotnik A, Schall TJ. Chemokine class differences in binding to the Duffy antigen-erythrocyte chemokine receptor. J Biol Chem 1995; 270:25348.

    Article  PubMed  CAS  Google Scholar 

  70. Hadley TJ, Lu Z-h, Wasniowska K, Martin AW, Peiper SC, Hesselgesser J, Horuk R. Postcapillary venule endothelial cells in kidney express a multispecific chemokine receptor that is structurally and functionally identical to the erythroid isoform, which is the Duffy blood group antigen. J Clin Invest 1994; 985.

  71. Horuk R, Chitnis CE, Darbonne WC, Colby TJ, Rybicki A, Hadley TJ, Miller LH. A receptor for the malarial parasitePlasmodiumi vivax: the erythrocyte chemokine receptor. Science 1993; 261:1182.

    Article  PubMed  CAS  Google Scholar 

  72. Rot A. Endothelial cell binding of NAP-1/IL-8: role in neutrophil emigration. Immunol Today 1992; 13:291.

    Article  PubMed  CAS  Google Scholar 

  73. Tanaka Y, Adams DH, Hubscher S, Hirano H, Siebenlist U, Shaw S. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1β. Nature 1993; 361:79.

    Article  PubMed  CAS  Google Scholar 

  74. Watson S, Arkinstall S, eds. G-protein linked effector and second mesenger systems. The G-protein linked receptor factsbook. London: Academic Press; 1994:357–371.

    Google Scholar 

  75. Jones SA, Moser B, Thelen M. A comparison of post-receptor signal transduction events in Jurkat cells transfected with either IL-8R1 or IL-8R2. Chemokine mediated activation of p42/p44 MAP-kinase (ERK-2). FEBS Lett 1995; 364:211.

    Article  PubMed  CAS  Google Scholar 

  76. Van Lint J, Van Damme J, Billiau A, Merlevede W, Vandenheede JR. Interleukin-8 activates microtubule-associated protein 2 kinase (ERK1) in human neutrophils. Mol Cell Biochem 1993; 127/128:171

    Article  Google Scholar 

  77. Bacon KB, Flores-Romo L, Life PF, Taub DD, Premack BA, Arkinstall SJ, Wells TNC, Schall TJ, Power CA. IL-8-induced signal transduction in T lymphocytes involves receptor-mediated activation of phospholipases C and D. J Immunol 1995; 154:3654.

    PubMed  CAS  Google Scholar 

  78. Locati M, Lamorte G, Luini W, Introna M, Bernasconi S, Mantovani A, Sozzani S. Inhibition of monocyte chemotaxis to C-C chemokines by antisense oligonucleotide for cytosolic phospholipase A2. J Biol Chem 1996; 271:6010.

    Article  PubMed  CAS  Google Scholar 

  79. Hunter MG, Bawden L, Brotherton D, Craig S, Cribbes S Czaplewski LG, Dexter TM, Drummond AH, Gearing AH, Heyworth CM, Lord BI, McCourt M, Varley PG, Wood LM, Edwards RM, Lewis PJ. BB-10010: an active variant of human macrophage inflammatory protein-1α with improved pharmaceutical properties. Blood 1995; 86:4400.

    PubMed  CAS  Google Scholar 

  80. Sarris AH, Broxmeyer HE, Wirthmueller U, Karasavvas N, Cooper S, Lu L, Krueger J, Ravetch JV. Human interferon-inducible protein-10: expression and purification of recombinant protein demonstrate inhibition of early human hematopoietic progenitors. J Exp Med 1993; 178:1127.

    Article  PubMed  CAS  Google Scholar 

  81. Van Damme J, Van Beeumen J, Opdenakker G, Billiau A. A novel, NH2-terminals sequence-characterized human monokine possessing neutrophil chemotactic, skin-reactive, and granulocytosis-promoting activity. J Exp Med 1988; 167:1364.

    Article  PubMed  Google Scholar 

  82. Laterveer L, Lindley IJD, Hamilton MS, Willemze R, Fibbe WE. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long term myelo-lymphoid repopulating ability. Blood 1995; 85:2269.

    PubMed  CAS  Google Scholar 

  83. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med 1995; 1:27.

    Article  PubMed  CAS  Google Scholar 

  84. Maione TE, Gray SG, Petro J, Hunt AJ, Donner AL, Bauer SI, Carson HF, Sharpe RJ. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990; 247:77.

    Article  PubMed  CAS  Google Scholar 

  85. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM. Interleukin-8 as a macrophagederived mediator of angiogenesis. Science 1992; 258:1798.

    Article  PubMed  CAS  Google Scholar 

  86. Mantovani A. Tumor-associated macrophages in neoplastic progressions: a paradigm for the in vivo function of chemokines. Lab Invest 1994; 71:5.

    PubMed  CAS  Google Scholar 

  87. Opdenakker G, Van Damme J. Chemotactic factors, passive invasion and metastasis of cancer cells. Immunol Today 1992; 13:463.

    Article  PubMed  CAS  Google Scholar 

  88. Opdenakker G, Van Damme J. Cytokine-regulated proteases in autoimmune diseases. Immunol Today 1994; 15:103.

    Article  PubMed  CAS  Google Scholar 

  89. Opdenakker G, Froyen G, Fiten P, Proost P, Van Damme J. Human monocyte chemotactic protein-3 (MCP-3): molecular cloning of the cDNA and comparison with other chemokines. Biochem Biophys Res Commun 1993; 191:535.

    Article  PubMed  CAS  Google Scholar 

  90. Masure S, Proost P, Van Damme J, Opdenakker G. Purification and identification of 91-kDa neutrophil gelatinase. Release by the activating peptide interleukin-8. Eur J Biochem 1991; 198:391.

    Article  PubMed  CAS  Google Scholar 

  91. Proost P, Van Damme J, Opdenakker G. Leukocyte getatinase B cleavage releases encephalitogens from human myelin basic protein. Biochem Biophys Res Commun 1993; 192:1175.

    Article  PubMed  CAS  Google Scholar 

  92. Cook DN, Beck MA, Coffman TM, Kirby SL, Sheridan JF, Pragnell IB, Smithies O. Requirement of MIP-1α for an inflammatory response to viral infection. Science 1995; 269:1583.

    Article  PubMed  CAS  Google Scholar 

  93. Woldemar Carr M, Roth SJ, Luther E, Rose SS, Springer TA. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci USA 1994; 91:3652.

    Article  CAS  Google Scholar 

  94. Van Damme J, Proost P, Put W, Arens S, Lenaerts J-P, Conings R, Opdenakker G, Heremans H, Billiau A. Induction of monocyte chemotactic proteins MCP-1 and MCP-2 in human fibroblasts and leukocytes by cytokines and cytokine inducers. J Immunol 1994; 152:5495.

    PubMed  CAS  Google Scholar 

  95. Cocchi F, De Vico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270:1811.

    Article  PubMed  CAS  Google Scholar 

  96. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR. Identification of a major co-receptor for primary isolated of HIV-1. Nature 381:661.

  97. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381:667.

    Article  PubMed  CAS  Google Scholar 

  98. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA. CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusions cofactor for macrophage-tropic HIV-1. Science 1996; 272:1955.

    Article  PubMed  CAS  Google Scholar 

  99. Feng Y, Broger CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272:872.

    Article  PubMed  CAS  Google Scholar 

  100. Eckmann L, Kagnoff MF, Fierer J. Epithelial cells screte the chemokine interleukin-8 in response to bacterial entry. Infect Immun 1993; 61:4569.

    PubMed  CAS  Google Scholar 

  101. Bossink AWJ, Paeman L, Jansen PM, Hack CE, Thijs LG, Van Damme J, Plasma levels of the chemokines monocyte chemotactic proteins-1 and-2 are elevated in human sepsis. Blood 1995; 86:3841.

    PubMed  CAS  Google Scholar 

  102. Taub DD, Proost P, Murphy WJ, Anver M, Longo DL, Van Damme J, Oppenheim JJ. Monocyte chemotactic protein-1 (MCP-1),-2, and-3 are chemotactic for human T lymphocytes. J Clin Invest 1995; 95:1370.

    Article  PubMed  CAS  Google Scholar 

  103. Schröder J-M, Mrowietz U, Morita E, Christophers E. Purification and partial biochemical characterization of a human monocyte-derived. neutrophil-activating peptide that lacks interleukin I activity. J Immunol 1987; 139:3474.

    PubMed  Google Scholar 

  104. Walz A, Baggiolini M. A novel cleavage product of β-thrombo-globulin formed in cultures of stimulated mononuclear cells activates human neutrophils. Biochem Biophys. Res Commun 1989; 159:969.

    Article  PubMed  CAS  Google Scholar 

  105. Proost P, Van Leuven P, Wuyts A, Ebberink R, Openakker G, Van Damme, J. Chemical synthesis, purification and folding of the human monocyte chemotactic protein MCP-2 and MCP-3 into biologically active chemokines. Cytokine 1995; 7:97.

    Article  PubMed  CAS  Google Scholar 

  106. Uguccioni M, D'Apuzzo M, Loetcher M, Dewald B, Baggiolini M. Actions of the chemotactic cytokines MCP-1, MCP-2, MCP-3, RANTES, MIP-1 α and MIP-1β on human monocytes. Eur J Immunol 1995; 25:64.

    Article  PubMed  CAS  Google Scholar 

  107. Matsushima K, Larsen CG, Dubois GC, Oppenheim JJ. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med 1989; 169:1485.

    Article  PubMed  CAS  Google Scholar 

  108. Rot A, Krieger M, Brunner T, Bischoff SC, Schall TJ, Dahinden CA. RANTES and macrophage inflammatory protein 1 α induce the migration and activation of normal human eosinophil granulocytes. J Exp Med 1992; 176:1489.

    Article  PubMed  CAS  Google Scholar 

  109. Taub DD, Sayers TJ, Carter CRD, Ortaldo JR. α and β chemokines induce NK cell migration and enhance NK-mediated cytolysis. J Immunol 1995; 155:3877.

    PubMed  CAS  Google Scholar 

  110. Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B. Monocyte chemotactic proteins MCP-1, MCP-2 and MCP-3 are major attractants for human CD4+ and CD8+ T lymphocytes. FASEB J 1994; 8:1055.

    PubMed  CAS  Google Scholar 

  111. Allavena P, Bianchi G, Zhou D, Van Damme J, Jilek P, Sozzani S, Mantovani A. Induction of natural killer cell migration by monotype chemotactic protein-1,-2 and-3. Eur J Immunol 1994; 24:3233.

    Article  PubMed  CAS  Google Scholar 

  112. Alam R, Forsythe P, Stafford S, Heinrich J, Brayo R, Proost P, Van Damme J. Monocyte chemotactic protein-2, monocyte chemotactic protein-3, and fibroblast-induced cytokine: three new chemokines induce chemotaxis and activation of basophils. J Immunol 1994; 153:3155.

    PubMed  CAS  Google Scholar 

  113. Noso N, Proost P, Van Damme J, Schröder J-M. Human monocyte chemotactic proteins-2 and- 3 (MCP-2 and MCP-3) attact human eosinophils and desensitize the chemotactic responses towards RANTES. Biochem Biophys Res Commun 1994; 200:1470.

    Article  PubMed  CAS  Google Scholar 

  114. Dahinden CA, Geiser T, Brunner T, Tscharner V von, Caput D, Ferrara P, Minty A, Baggiolini M. Monocyte chemotactic protein-3 is a most effective basophil- and eoseinophil-activating chemokine. J Exp Med 1994; 179:751.

    Article  PubMed  CAS  Google Scholar 

  115. Van Damme J, Decock B, Lenaerts J-P, Conings R, Bertini R, Mantovani A, Billiau A. Identification by sequence analysis of chemotactic factors for monocytes produced by normal and transformed cells stimulated with virus, double-stranded RNA or cytokine. Eur J Immunol 1989; 19:2367.

    Article  PubMed  Google Scholar 

  116. Loetscher P, Seitz M, Clark-Lewis I, Baggionili M, Moser B. Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 1996; 156:322.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proost, P., Wuyts, A. & Van Damme, J. The role of chemokines in inflammation. Int J Clin Lab Res 26, 211–223 (1996). https://doi.org/10.1007/BF02602952

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02602952

Key words

Navigation