Skip to main content
Log in

The calculus of finite differences over certain systems of numbers

  • Published:
CALCOLO Aims and scope Submit manuscript

Abstract

A recursive process of interpolation over functions whose arguments belong to certain systems of numbers is described. The process can, in particular, be applied to functions of many variables and, for the examples considered, is both more flexible and more powerful than either the use of many dimensional divided differences or multivariate Lagrange interpolation. Recursive processes of differentiation, integration, and confluent interpolation over functions whose arguments belong to certain further systems of numbers are developed from the interpolation procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steffenson J. F.,Interpolation, Second Ed. (1965), Chelsea, New York.

  2. Thacher H. C. andMilne W. E.,Interpolation in several variables, Jour. Soc. Indust. Appl. Math.,8 (1960) 33–42.

    Article  MATH  MathSciNet  Google Scholar 

  3. Thacher H. C.,Derivation of interpolation formulas in several independent variables, Ann. New York Acad. Sci.,86 (1960) 158–775.

    MathSciNet  Google Scholar 

  4. Coatmélec C.,Approximation et interpolation des fonctions différentiables de plusiers variables, Ann. Sci. École Norm. Sup.,83 (1966) 271–341.

    MATH  Google Scholar 

  5. Birkhoff G., Schulz M. andVarga R. S.,Piecewise Hermite interpolation in one and two variables with application to partial differential equations, Numer. Math.,11 (1968) 232–256.

    Article  MATH  MathSciNet  Google Scholar 

  6. Hall C. A.,Bicubic interpolation over triangles, Jour. Math. Mech.,19 (1969) 1–11.

    MATH  Google Scholar 

  7. Guenther R. B. andRothman E. L.,Some observations on interpolation in higher dimensions, Math. Comput.,24 (1970) 517–522.

    Article  Google Scholar 

  8. Zenísek A.,Interpolation polynomials on the triangle, Numer. math.,15 (1970) 283–296.

    Article  MATH  MathSciNet  Google Scholar 

  9. Nicolaides R. A. On Lagrange interpolation in n variables, Institute of Computer Science (London) Tech. Note ICSI 274 (1970).

  10. Nicolaides R. A.,On a class of finite elements generated by Lagrange interpolation, Institute of Computer Science (London) Tech. Note ICSI 329 (1971).

  11. Salzer H. E.,Formulas for bivariate hyperosculatory interpolation, Math. Comput.,25 (1971) 119–133.

    Article  MATH  MathSciNet  Google Scholar 

  12. Ciarlet P. G. andRaviart P. A.,General Lagrange and Hermite interpolation in R n with applications to finite element methods, Arch. Rational Mech. Anal.,46 (1972) 177–199.

    Article  MATH  MathSciNet  Google Scholar 

  13. Sylvester J. J.,On the equation to the secular inequalities in the planetary theory, Phil. Mag.16 (1883) 267–269.

    Google Scholar 

  14. Nitsche J.,Interpolation in Sobolevschen Funktionenraumen, Numer. Math.,13 (1969) 334–343.

    Article  MATH  MathSciNet  Google Scholar 

  15. Semenov E. M.,Imbedding theorems for Banach spaces of measurable functions, Soviet. Math. Dokl.,5 (1964) 831–834.

    MATH  Google Scholar 

  16. Semenov E. M.,A new interpolation theorem, Functional Anal. Appl.,2 (1968) 158–168.

    Article  Google Scholar 

  17. Semenov E. M.,A new method for establishing interpolation theorems in symmetric spaces, Soviet Math. Dokl.,10 (1969) 507–510.

    MATH  Google Scholar 

  18. Mityagin B. S.,An interpolation theorem for modular spaces, Mat. Sb.,66 (1965) 473–482.

    MathSciNet  Google Scholar 

  19. Calderón A. P.,Spaces between L’ and L and the theorem of Marcinkiowicz, Studia Math.,26 (1966) 273–299.

    MATH  MathSciNet  Google Scholar 

  20. Shimogaki T.,On the complete continuity of operators in an interpolation theorem, Jour. Fac. Sci. Hokkaido Univ., Ser. I,20 (1968) 109–114.

    MATH  MathSciNet  Google Scholar 

  21. Shimogaki T.,An interpolation theorem on Banach function spaces, Studia Math.,31 (1968) 233–240.

    MATH  MathSciNet  Google Scholar 

  22. Lorentz G. G. andShimogaki T.,Interpolation theorems for operators in function spaces, J. Functional Analysis,2 (1968) 31–51.

    Article  MATH  MathSciNet  Google Scholar 

  23. Lorentz G. G. andShimogaki T.,Interpolation theorems for space Λ, Abstract spaces and approximation (Proc. Conf. Oberwolfach, 1968) Birkhaüser, Basel (1969) 94–98.

    Google Scholar 

  24. Boyd D. W.,Indices of function spaces and their relationships to interpolation, Canad. J. Math.,21 (1969) 1245–1254.

    MATH  MathSciNet  Google Scholar 

  25. Zippin M.,Interpolation of operators of weak type between rearrangement invariant function spaces, J. Functional Analysis,7 (1971) 267–284.

    Article  MATH  MathSciNet  Google Scholar 

  26. Sharpley R. C.,Spaces Λ (X) and interpolation, J. Functional Analysis11 (1972) 479–513.

    Article  MATH  MathSciNet  Google Scholar 

  27. Sharpley R. C.,Interpolation theorems for compact operators, Indiana Univ. Math. J.22 (1973) 965–984.

    Article  MATH  MathSciNet  Google Scholar 

  28. Sharpley R. C.,Interpolation of operators for Λ spaces, Bull. Amer. Math. Soc.,80 (1974) 259–261.

    Article  MATH  MathSciNet  Google Scholar 

  29. Sharpley R. C.,Interpolation of n pairs and counter examples employing indices, J. Approximation Theory,13 (1975) 117–127.

    Article  MATH  MathSciNet  Google Scholar 

  30. Krein S. G. andSemenov E. M.,Interpolation of operators of weakened type, Functional Anal. Appl.,7 (1973) 89–90.

    Article  MathSciNet  Google Scholar 

  31. Aitken A. C.,On interpolation by proportional parts, without the use of differences, Proc. Edinburgh Math. Soc.,3 (1932) 56–84.

    MATH  Google Scholar 

  32. Neville E. H.,Iterative interpolation, J. Indian Math. Soc.,20 (1934) 87–120.

    Google Scholar 

  33. van der Waerden B. L.,Algebra (5th Ed.) (1967), Springer, Berlin-Heidelberg-New York.

    MATH  Google Scholar 

  34. Moore E. H.,On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc.,26 (1920) 394–395.

    Google Scholar 

  35. Moore E. H.,General analysis, Mem. Amer. Math. Soc.,1 (1935).

  36. Penrose R.,A generalized inverse for matrices, Proc. Camb. Phil. Soc.,51 (1950) 406–413.

    Article  MathSciNet  Google Scholar 

  37. Schafer R. D.,An introduction to nonassociative algebras (1966), Academic Press, New York-London.

    MATH  Google Scholar 

  38. Wynn P.,A note on the generalized Euler transformation, Comput. J.14 (1974) 437–441.

    Article  MathSciNet  Google Scholar 

  39. Wynn P.,General purpose vector epsilon algorithm procedures, Numer Math.,6 (1964) 22–36.

    Article  MATH  MathSciNet  Google Scholar 

  40. Wynn P.,A note on Salzer’s method for summing certain slowly convergent series, J. Mathematical Phys.,35 (1956) 318–320.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wynn, P. The calculus of finite differences over certain systems of numbers. Calcolo 14, 303–341 (1977). https://doi.org/10.1007/BF02575990

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575990

Keywords

Navigation