Skip to main content
Log in

cDNA and amino acid sequences of rainbow trout (Oncorhynchus mykiss) lysozymes and their implications for the evolution of lysozyme and lactalbumin

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The complete 129-amino-acid sequences of two rainbow trout lysozymes (I and II) isolated from kidney were established using protein chemistry microtechniques. The two sequences differ only at position 86, I having aspartic acid and II having alanine. A cDNA clone coding for rainbow trout lysozyme was isolated from a cDNA library made from liver mRNA. Sequencing of the cloned cDNA insert, which was 1 kb in length, revealed a 432-bp open reading frame encoding an amino-terminal peptide of 15 amino acids and a mature enzyme of 129 amino acids identical in sequence to II. Forms I and II from kidney and liver were also analyzed using enzymatic amplification via PCR and direct sequencing; both organs contain mRNA encoding the two lysozymes. Evolutionary trees relating DNA sequences coding for lysozymesc and α-lactalbumins provide evidence that the gene duplication giving rise to conventional vertebrate lysozymesc and to lactalbumin preceded the divergence of fishes and tetrapods about 400 Myr ago. Evolutionary analysis also suggests that amino acid replacements may have accumulated more slowly on the lineage leading to fish lysozyme than on those leading to mammal and bird lysozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cDNA:

complementary DNA

Myr:

million years

SSC:

150 mM sodium chloride, 15 mM sodium citrate pH 7.0

PCR:

polymerase chain reaction

References

  • Aviv H, Leder P (1972) Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acidcellulose. Proc Natl Acad Sci USA 69:1408–1412

    Article  PubMed  CAS  Google Scholar 

  • Brand SJ, Fuller PJ (1988) Differential gastrin gene expression in rat gastrointestinal tract and pancreas during neonatal development. J Biol Chem 263:5341–5347

    PubMed  CAS  Google Scholar 

  • Chen EY, Seeburg PH (1985) Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170

    Article  PubMed  CAS  Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    Article  PubMed  CAS  Google Scholar 

  • Crestfield AM, Moore S, Stein WH (1963) The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem 238:622–627

    PubMed  CAS  Google Scholar 

  • Cross M, Renkawitz R (1990) Repetitive sequence involvement in the duplication and divergence of mouse lysozyme genes. EMBO J 9:1283–1288

    PubMed  CAS  Google Scholar 

  • Doherty PJ, Huesca-Contreras M, Dosch HM, Pan S (1989) Rapid amplification of complementary DNA from small amounts of unfractionated RNA. Anal Biochem 177:7–10

    Article  PubMed  CAS  Google Scholar 

  • Duckworth ML, Gait MJ, Goelet P, Hong GF, Singh M, Titmas RC (1981) Rapid synthesis of oligodeoxyribonucleotides VI. Efficient, mechanised synthesis of heptadecadeoxyribonucleotides by an improved solid phase phosphotriester route. Nucleic Acids Res 9:1691–1706

    PubMed  CAS  Google Scholar 

  • Godovac-Zimmermann J, Conti A, Napolitano L (1988) The primary structure of donkey (Equus asinus) lysozyme contains the Ca(II) binding site of α-lactalbumin. Biol Chem Hoppe-Seyler 369:1109–1115

    PubMed  CAS  Google Scholar 

  • Grinde B, Jollès J, Jollès P (1988) Purification and characterization of two lysozymes from rainbow trout (Salmo gairdneri). Eur J Biochem 173:269–273

    Article  PubMed  CAS  Google Scholar 

  • Gubler U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25:263–269

    Article  PubMed  CAS  Google Scholar 

  • Higuchi R, von Beroldingen CH, Sensabaugh GF, Erlich HA (1988) DNA typing from single hairs. Nature 332:543–546

    Article  PubMed  CAS  Google Scholar 

  • Irwin DM, Wilson AC (1989) Multiple cDNA sequences and the evolution of bovine stomach lysozyme. J Biol Chem 264: 11387–11393

    PubMed  CAS  Google Scholar 

  • Irwin DM, Wilson AC (1990) Concerted evolution of ruminant stomach lysozymes. Characterization of lysozyme cDNA clones from sheep and deer. J Biol Chem 265:4944–4952

    PubMed  CAS  Google Scholar 

  • Jollès J, Van Leemputten E, Mouton A, Jollès P (1972) Amino acid sequence of guinea-hen egg-white lysozyme. Biochim Biophys Acta 257:497–510

    PubMed  Google Scholar 

  • Jollès J, Jollès P, Bowman BH, Prager EM, Stewart C-B, Wilson AC (1989) Episodic evolution in the stomach lysozymes of ruminants. J Mol Evol 28:528–535

    PubMed  Google Scholar 

  • Jollès J, Prager EM, Alnemri ES, Jollès P, Ibrahimi IM, Wilson AC (1990) Amino acid sequences of stomach and nonstomach lysozymes of ruminants. J Mol Evol 30:370–382

    Article  PubMed  Google Scholar 

  • Jollès P (1976) A possible physiological function of lysozyme. Biomédecine 25:275–276

    PubMed  Google Scholar 

  • Jollès P, Jollès J (1984) What's new in lysozyme research? Mol Cell Biochem 63:165–189

    Article  PubMed  Google Scholar 

  • Kitagawa Y, Tsunasawa S, Tanaka N, Katsube Y, Sakiyama F, Asada K (1986) Amino acid sequence of coppper, zinc-superoxide dismutase from spinach leaves. J Biochem 99:1289–1298

    PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  • Nitta K, Sugai S (1989) The evolution of lysozyme and α-lactalbumin. Eur J Biochem 182:111–118

    Article  PubMed  CAS  Google Scholar 

  • Prager EM, Wilson AC (1988) Ancient origin of lactalbumin from lysozyme: analysis of DNA and amino acid sequences. J Mol Evol 27:326–335

    Article  PubMed  CAS  Google Scholar 

  • Reinisch CL, Litman GW (1989) Evolutionary immunobiology. Immunology Today 10:278–281

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez R, Menéndez-Arias L, González de Buitrago G, Gavilanes JG (1987) Structure of the pigeon lysozyme and its relationship with other typec lysozymes. Comp Biochem Physiol 88B:791–796

    Google Scholar 

  • Romer AS (1966) Vertebrate paleontology, ed 3. University of Chicago Press, Chicago IL

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Stewart C-B, Schilling JW, Wilson AC (1987) Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature 330:401–404

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G (1985) Signal sequences. The limits of variation. J Mol Biol 184:99–105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dautigny, A., Prager, E.M., Pham-Dinh, D. et al. cDNA and amino acid sequences of rainbow trout (Oncorhynchus mykiss) lysozymes and their implications for the evolution of lysozyme and lactalbumin. J Mol Evol 32, 187–198 (1991). https://doi.org/10.1007/BF02515392

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02515392

Key words

Navigation