Skip to main content
Log in

Spherical means and the restriction phenomenon

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Let Γ be a smooth compact convex planar curve with arc length dm and let dσ=ψ dm where ψ is a cutoff function. For Θ∈SO (2) set σΘ(E) = σ(ΘE) for any measurable planar set E. Then, for suitable functions f in ℝ2, the inequality.

$$\left\{ {\int_{SO(2)} {\left[ {\int_{\mathbb{R}^2 } {\left| {\hat f(\xi )} \right|^2 d\sigma _\Theta (\xi )} } \right]^{s/2} d\Theta } } \right\}^{1/s} \leqslant c\left\| f \right\|_p$$

represents an average over rotations, of the Stein-Tomas restriction phenomenon. We obtain best possible indices for the above inequality when Γ is any convex curve and under various geometric assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bak, J.B. (1997). Sharp estimates for the Bochner-Riesz operator of negative order,Proc. Am. Math. Soc.,125, 1977–1986.

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck, J. (1987). Irregularities of distribution I,Acta Math.,159, 1–49.

    Article  MathSciNet  MATH  Google Scholar 

  3. Börjeson, L. (1986). Estimates for the Bochner-Riesz operator with negative index,Indiana Univ. Math. J.,35, 225–233.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J. (1994). Hausdorff dimension and distance sets,Isr. J. Math.,87, 193–201.

    MathSciNet  MATH  Google Scholar 

  5. Brandolini, L. and Colzani, L. unpublished.

  6. Brandolini, L., Colzani, L., and Travaglini G. (1997). Average decay of Fourier transforms and integer points in polyhedra,Ark. f. Mat.,35, 253–275.

    MathSciNet  MATH  Google Scholar 

  7. Brandolini, L., Rigoli M., and Travaglini, G. (1998). Average decay of Fourier transforms and geometry of convex sets,Rev. Mat. Iberoam.,14, 519–560.

    MathSciNet  MATH  Google Scholar 

  8. Brandolini, L. and Travaglini, G. (1997). Pointwise convergence of the Fejer type means,Tohoku Math. J.,49, 323–336.

    MathSciNet  MATH  Google Scholar 

  9. Bruna, J., Nagel, A., and Wainger, S. (1988). Convex hypersurfaces and Fourier transform,Ann. of Math.,127, 333–365.

    Article  MathSciNet  Google Scholar 

  10. Fefferman, C. (1973). A note on spherical summation multipliers,Isr. J. Math.,14, 44–52.

    Google Scholar 

  11. Hörmander, L. (1960). Estimates for translation invariant operators inL p spaces,Acta Math.,104, 93–140.

    MathSciNet  MATH  Google Scholar 

  12. Iosevich, A. (1999). Fourier transform,L 2 restriction theorem, and, scaling,Boll. Unione Mat. Ital. Sez. B,2, 383–387.

    MathSciNet  MATH  Google Scholar 

  13. Iosevich, A. Lattice points and generalized diophantine conditions, to appear inJ. Number Theory.

  14. Iosevich, A. and Pedersen, S. (1998). Spectral and tiling properties of the unit cube,I.M.R.N.,16, 819–828.

    Article  MathSciNet  Google Scholar 

  15. Iosevich, A. and Pedersen, S. (2000). How large are the spectral gaps?,Pacific. J. of Math.,192 307–314.

    Article  MathSciNet  MATH  Google Scholar 

  16. Iosevich, A. and Sawyer, E. (1997). Averages over surfaces,Adv. in Math.,132, 46–119.

    Article  MathSciNet  MATH  Google Scholar 

  17. Marletta, G. and Ricci, F. (1998). Two parameter maximal functions associated with homogenoeus surfaces in ℝn,Studia Math.,130(1), 53–65.

    MathSciNet  MATH  Google Scholar 

  18. Montgomery, H. (1994). Ten lectures on the interface between analytic number theory and harmonic analysis,C.B.M.S. Regional Conf. Ser. in Math.,84,Am. Math. Soc., Providence, RI.

    MATH  Google Scholar 

  19. Podkorytov, A.N. (1991). The asymptotic of Fourier transform on a convex curve,Vestn. Leningr. Univ. Mat.,24, 57–65.

    MathSciNet  MATH  Google Scholar 

  20. Randol, B. (1969). On the Fourier transform of the indicator function of a planar set,Trans. of Am. Math. Soc.,139, 279–285.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ricci, F. and Travaglini, G. (2001). Convex curves, Radon transforms and convolution operators associated to singular measures,Proc. A.M.S.,129, 1739–1744.

    Article  MathSciNet  MATH  Google Scholar 

  22. Sjölin, P. (1997). Estimates of averages of Fourier transforms of measures with finite energy,Ann. Acad. Sci. Fenn. Math.,22(1), 227–236.

    MathSciNet  Google Scholar 

  23. Sjölin, P., and Soria, F. (1999). Some remarks on restriction of the Fourier transform for general measures,Publ. Mat.,43, 655–664.

    MathSciNet  MATH  Google Scholar 

  24. Stein, E.M. (1971).Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton.

    Google Scholar 

  25. Stein, E.M. (1993).Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton.

    MATH  Google Scholar 

  26. Tomas, P. (1979). Restriction theorems for the Fourier transform,Proc. Symp. Pure Math.,XXXV, 111–114.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Fulvio Ricci

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandolini, L., Iosevich, A. & Travaglini, G. Spherical means and the restriction phenomenon. The Journal of Fourier Analysis and Applications 7, 359–372 (2001). https://doi.org/10.1007/BF02514502

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02514502

Math Subject Classifications

Keywords and Phrases

Navigation